organic compounds
1,3-Bis[4-(dimethylamino)benzyl]-4,5,6,7-tetrahydro-1H-1,3-diazepan-2-ium chloride
aDepartment of Natural Sciences, Fayetteville State University, Fayetteville, NC 28301, USA, bDepartment of Chemistry, Faculty of Pharmacy, Mersin University, Mersin, TR 33169, Turkey, cDepartment of Chemistry, Clemson University, Clemson, SC 29634, USA, dDepartment of Chemistry, Faculty of Science and Arts, İnönü University, Malatya, TR 44280, Turkey, and eDepartment of Chemistry, Faculty of Science, Ege University, Bornova-İzmir, TR 35100, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com
The title N-heterocyclic carbene derivative, C23H33N4+·Cl−, has been synthesized and characterized by elemental analysis, 1H and 13C NMR, IR spectroscopy and a single-crystal X-ray diffraction study. Ions of the title compound are linked by three C—H⋯Cl interactions. The seven-membered 1,3-diazepane ring has a form intermediate between twist-chair and twist-boat.
Related literature
For the synthesis, see: Özdemir et al. (2005); Yaşar et al. (2008). For general background, see: Hermann (2002); Littke & Fu (2002); Evans & Boeyens (1989). For puckering parameters, see: Cremer & Pople (1975). For related compounds, see: Arslan et al. (2007a,b,c). For general background to the use of N-heterocyclic as phosphine mimics and in catalysis, see: Arduengo & Krafczyk (1998); Dullius et al. (1998); Glorius (2007); Hermann & Köcher (1997); Nolan (2006); Regitz (1996). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku/MSC, 2001); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808041603/hg2445sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808041603/hg2445Isup2.hkl
To a solution of 1,4-bis(p-dimethylaminobenzylamino)butane (1 mmol) CH(OEt)3 (30 ml), NH4Cl (1 mmol) was added; the reaction mixture was heated for 18 h at 100 °C (Scheme 2). A white solid was precipitated. Then, the precipitate was crystallized from EtOH-Et2O (1:2) mixture (Özdemir et al., 2005). 1,3-bis(4-(dimethylamino)benzyl)-4,5,6,7-tetrahydro-1H-1,3-diazepin-2-ium chloride: Yield: 3.11 g (92%), M.p. 247–248 °C. 1H NMR (300.13 MHz, DMSO) δ = 1.68 (quintet, J = 6.8 Hz, 4H, NCH2CH2CH2CH2N), 2.89 (s, 12H, p-(CH3)2NC6H4CH2), 3.52 (t, J = 6.8 Hz, 4H, NCH2CH2CH2CH2N), 4.54 (s, 4H, p-(CH3)2NC6H4CH2), 6.73 and 7.27 (d, J =8.4 Hz, 8H, p-(CH3)2NC6H4CH2), 8.87 (s,1H, 2-CH). 13C{1H}NMR (75.47 MHz, DMSO): δ = 24.7, 48.7 (NCH2CH2CH2CH2N), 40.7 (p-(CH3)2NC6H4CH2), 60.1 (p-(CH3)2NC6H4CH2), 112.9, 122.2, 130.1, 151.1 (p-(CH3)2NC6H4CH2), 158.3 (2-CH). Anal. Calcd. for C23H33N4Cl: C, 68.89; H, 8.29; N, 13.97. Found: C, 68.88; H, 8.30; N, 13.94.
Data collection: CrystalClear (Rigaku/MSC, 2001); cell
CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalClear (Rigaku/MSC, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C23H33N4+·Cl− | F(000) = 864 |
Mr = 400.98 | Dx = 1.210 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 5004 reflections |
a = 22.663 (5) Å | θ = 3.1–26.4° |
b = 10.081 (2) Å | µ = 0.19 mm−1 |
c = 9.6368 (19) Å | T = 153 K |
V = 2201.7 (8) Å3 | Rod, colorless |
Z = 4 | 0.46 × 0.12 × 0.07 mm |
Rigaku Mercury CCD diffractometer | 1947 independent reflections |
Radiation source: Sealed Tube | 1481 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.053 |
Detector resolution: 14.6306 pixels mm-1 | θmax = 25.1°, θmin = 3.1° |
ω scans | h = −27→23 |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | k = −12→11 |
Tmin = 0.918, Tmax = 0.987 | l = −11→11 |
14704 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.160 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0629P)2 + 3.1587P] where P = (Fo2 + 2Fc2)/3 |
1947 reflections | (Δ/σ)max < 0.001 |
130 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C23H33N4+·Cl− | V = 2201.7 (8) Å3 |
Mr = 400.98 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 22.663 (5) Å | µ = 0.19 mm−1 |
b = 10.081 (2) Å | T = 153 K |
c = 9.6368 (19) Å | 0.46 × 0.12 × 0.07 mm |
Rigaku Mercury CCD diffractometer | 1947 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 1481 reflections with I > 2σ(I) |
Tmin = 0.918, Tmax = 0.987 | Rint = 0.053 |
14704 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.160 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.28 e Å−3 |
1947 reflections | Δρmin = −0.30 e Å−3 |
130 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.5000 | 0.27328 (9) | 0.2500 | 0.0326 (3) | |
N1 | 0.53058 (10) | 0.3281 (2) | 0.8530 (2) | 0.0263 (5) | |
N2 | 0.81399 (11) | 0.3446 (3) | 0.8340 (3) | 0.0465 (8) | |
C1 | 0.5000 | 0.3809 (4) | 0.7500 | 0.0234 (8) | |
H1 | 0.5000 | 0.4761 | 0.7500 | 0.028* | |
C2 | 0.54103 (13) | 0.1885 (3) | 0.8905 (3) | 0.0320 (7) | |
H2A | 0.5391 | 0.1810 | 0.9897 | 0.038* | |
H2B | 0.5805 | 0.1656 | 0.8631 | 0.038* | |
C3 | 0.49952 (13) | 0.0887 (3) | 0.8287 (3) | 0.0299 (7) | |
H3A | 0.4602 | 0.1074 | 0.8599 | 0.036* | |
H3B | 0.5100 | 0.0019 | 0.8616 | 0.036* | |
C4 | 0.56701 (12) | 0.4207 (3) | 0.9380 (3) | 0.0286 (6) | |
H4A | 0.5588 | 0.4062 | 1.0345 | 0.034* | |
H4B | 0.5564 | 0.5104 | 0.9160 | 0.034* | |
C5 | 0.63188 (12) | 0.4015 (3) | 0.9123 (3) | 0.0280 (6) | |
C6 | 0.65910 (13) | 0.4560 (3) | 0.7968 (3) | 0.0361 (7) | |
H6 | 0.6359 | 0.5068 | 0.7327 | 0.043* | |
C7 | 0.71893 (14) | 0.4394 (3) | 0.7709 (4) | 0.0410 (8) | |
H7 | 0.7364 | 0.4791 | 0.6902 | 0.049* | |
C8 | 0.75396 (13) | 0.3648 (3) | 0.8622 (3) | 0.0359 (7) | |
C9 | 0.72698 (13) | 0.3100 (3) | 0.9785 (3) | 0.0359 (7) | |
H9 | 0.7500 | 0.2585 | 1.0425 | 0.043* | |
C10 | 0.66696 (13) | 0.3289 (3) | 1.0031 (3) | 0.0316 (7) | |
H10 | 0.6494 | 0.2909 | 1.0846 | 0.038* | |
C11 | 0.84333 (15) | 0.4411 (4) | 0.7441 (5) | 0.0577 (11) | |
H11A | 0.8243 | 0.4424 | 0.6552 | 0.087* | |
H11B | 0.8840 | 0.4166 | 0.7328 | 0.087* | |
H11C | 0.8410 | 0.5276 | 0.7854 | 0.087* | |
C12 | 0.85025 (15) | 0.2829 (4) | 0.9408 (4) | 0.0569 (11) | |
H12A | 0.8501 | 0.3374 | 1.0225 | 0.085* | |
H12B | 0.8900 | 0.2737 | 0.9074 | 0.085* | |
H12C | 0.8346 | 0.1970 | 0.9628 | 0.085* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0410 (6) | 0.0223 (5) | 0.0347 (5) | 0.000 | 0.0031 (4) | 0.000 |
N1 | 0.0280 (12) | 0.0207 (11) | 0.0302 (12) | −0.0008 (9) | 0.0021 (10) | −0.0010 (10) |
N2 | 0.0300 (14) | 0.0458 (17) | 0.064 (2) | −0.0016 (12) | 0.0035 (13) | −0.0117 (15) |
C1 | 0.0210 (17) | 0.0196 (18) | 0.030 (2) | 0.000 | 0.0053 (16) | 0.000 |
C2 | 0.0399 (16) | 0.0206 (14) | 0.0356 (16) | 0.0035 (12) | −0.0043 (13) | 0.0019 (12) |
C3 | 0.0376 (15) | 0.0191 (13) | 0.0331 (16) | 0.0013 (12) | 0.0030 (13) | 0.0035 (11) |
C4 | 0.0303 (14) | 0.0239 (14) | 0.0315 (15) | 0.0006 (11) | 0.0013 (12) | −0.0053 (12) |
C5 | 0.0300 (15) | 0.0251 (14) | 0.0290 (15) | −0.0003 (11) | 0.0000 (11) | −0.0032 (12) |
C6 | 0.0331 (16) | 0.0372 (17) | 0.0379 (17) | 0.0004 (13) | 0.0013 (13) | 0.0056 (14) |
C7 | 0.0386 (17) | 0.0415 (18) | 0.0430 (19) | −0.0055 (14) | 0.0073 (14) | 0.0058 (15) |
C8 | 0.0299 (15) | 0.0327 (16) | 0.0450 (17) | −0.0011 (12) | 0.0007 (14) | −0.0093 (14) |
C9 | 0.0353 (16) | 0.0350 (17) | 0.0373 (17) | 0.0069 (13) | −0.0062 (13) | −0.0036 (14) |
C10 | 0.0348 (16) | 0.0299 (15) | 0.0300 (15) | −0.0002 (12) | 0.0000 (12) | −0.0013 (13) |
C11 | 0.0358 (18) | 0.045 (2) | 0.092 (3) | −0.0136 (15) | 0.0185 (19) | −0.014 (2) |
C12 | 0.0326 (17) | 0.067 (3) | 0.071 (3) | 0.0097 (17) | −0.0076 (18) | −0.024 (2) |
N1—C1 | 1.322 (3) | C5—C6 | 1.386 (4) |
N1—C2 | 1.472 (3) | C5—C10 | 1.391 (4) |
N1—C4 | 1.491 (3) | C6—C7 | 1.389 (4) |
N2—C8 | 1.402 (4) | C6—H6 | 0.9600 |
N2—C12 | 1.456 (5) | C7—C8 | 1.404 (5) |
N2—C11 | 1.462 (5) | C7—H7 | 0.9600 |
C1—N1i | 1.322 (3) | C8—C9 | 1.391 (4) |
C1—H1 | 0.9600 | C9—C10 | 1.394 (4) |
C2—C3 | 1.501 (4) | C9—H9 | 0.9600 |
C2—H2A | 0.9600 | C10—H10 | 0.9600 |
C2—H2B | 0.9600 | C11—H11A | 0.9599 |
C3—C3i | 1.517 (6) | C11—H11B | 0.9599 |
C3—H3A | 0.9600 | C11—H11C | 0.9599 |
C3—H3B | 0.9600 | C12—H12A | 0.9599 |
C4—C5 | 1.503 (4) | C12—H12B | 0.9599 |
C4—H4A | 0.9600 | C12—H12C | 0.9599 |
C4—H4B | 0.9600 | ||
C1—N1—C2 | 130.8 (3) | C10—C5—C4 | 121.5 (3) |
C1—N1—C4 | 116.8 (2) | C5—C6—C7 | 122.1 (3) |
C2—N1—C4 | 112.0 (2) | C5—C6—H6 | 119.0 |
C8—N2—C12 | 118.2 (3) | C7—C6—H6 | 119.0 |
C8—N2—C11 | 117.3 (3) | C6—C7—C8 | 120.3 (3) |
C12—N2—C11 | 116.5 (3) | C6—C7—H7 | 119.9 |
N1i—C1—N1 | 132.6 (4) | C8—C7—H7 | 119.9 |
N1i—C1—H1 | 113.7 | C9—C8—N2 | 121.7 (3) |
N1—C1—H1 | 113.7 | C9—C8—C7 | 118.0 (3) |
N1—C2—C3 | 116.3 (2) | N2—C8—C7 | 120.3 (3) |
N1—C2—H2A | 108.2 | C8—C9—C10 | 120.8 (3) |
C3—C2—H2A | 108.2 | C8—C9—H9 | 119.6 |
N1—C2—H2B | 108.2 | C10—C9—H9 | 119.6 |
C3—C2—H2B | 108.2 | C5—C10—C9 | 121.5 (3) |
H2A—C2—H2B | 107.4 | C5—C10—H10 | 119.2 |
C2—C3—C3i | 112.8 (2) | C9—C10—H10 | 119.2 |
C2—C3—H3A | 109.0 | N2—C11—H11A | 109.5 |
C3i—C3—H3A | 109.0 | N2—C11—H11B | 109.5 |
C2—C3—H3B | 109.0 | H11A—C11—H11B | 109.5 |
C3i—C3—H3B | 109.0 | N2—C11—H11C | 109.5 |
H3A—C3—H3B | 107.8 | H11A—C11—H11C | 109.5 |
N1—C4—C5 | 111.8 (2) | H11B—C11—H11C | 109.5 |
N1—C4—H4A | 109.3 | N2—C12—H12A | 109.5 |
C5—C4—H4A | 109.3 | N2—C12—H12B | 109.5 |
N1—C4—H4B | 109.3 | H12A—C12—H12B | 109.5 |
C5—C4—H4B | 109.3 | N2—C12—H12C | 109.5 |
H4A—C4—H4B | 107.9 | H12A—C12—H12C | 109.5 |
C6—C5—C10 | 117.4 (3) | H12B—C12—H12C | 109.5 |
C6—C5—C4 | 121.1 (3) | ||
C2—N1—C1—N1i | −0.7 (2) | C12—N2—C8—C9 | −10.0 (4) |
C4—N1—C1—N1i | 171.0 (2) | C11—N2—C8—C9 | −157.9 (3) |
C1—N1—C2—C3 | −18.0 (4) | C12—N2—C8—C7 | 171.5 (3) |
C4—N1—C2—C3 | 170.0 (2) | C11—N2—C8—C7 | 23.6 (5) |
N1—C2—C3—C3i | 59.9 (4) | C6—C7—C8—C9 | −0.5 (5) |
C1—N1—C4—C5 | −109.3 (2) | C6—C7—C8—N2 | 178.0 (3) |
C2—N1—C4—C5 | 63.9 (3) | N2—C8—C9—C10 | −178.6 (3) |
N1—C4—C5—C6 | 80.0 (3) | C7—C8—C9—C10 | −0.1 (5) |
N1—C4—C5—C10 | −100.1 (3) | C6—C5—C10—C9 | −0.8 (4) |
C10—C5—C6—C7 | 0.2 (5) | C4—C5—C10—C9 | 179.3 (3) |
C4—C5—C6—C7 | −179.9 (3) | C8—C9—C10—C5 | 0.7 (5) |
C5—C6—C7—C8 | 0.4 (5) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl1ii | 0.96 | 2.53 | 3.486 (4) | 180 |
C2—H2A···Cl1iii | 0.96 | 2.82 | 3.688 (3) | 151 |
C4—H4A···Cl1iii | 0.96 | 2.81 | 3.682 (3) | 152 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | C23H33N4+·Cl− |
Mr | 400.98 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 153 |
a, b, c (Å) | 22.663 (5), 10.081 (2), 9.6368 (19) |
V (Å3) | 2201.7 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.19 |
Crystal size (mm) | 0.46 × 0.12 × 0.07 |
Data collection | |
Diffractometer | Rigaku Mercury CCD diffractometer |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) |
Tmin, Tmax | 0.918, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14704, 1947, 1481 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.160, 1.10 |
No. of reflections | 1947 |
No. of parameters | 130 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.30 |
Computer programs: CrystalClear (Rigaku/MSC, 2001), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl1i | 0.96 | 2.53 | 3.486 (4) | 180.0 |
C2—H2A···Cl1ii | 0.96 | 2.82 | 3.688 (3) | 151.0 |
C4—H4A···Cl1ii | 0.96 | 2.81 | 3.682 (3) | 152.0 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, z+1. |
Acknowledgements
We thank the Technological and Scientific Research Council of Turkey TÜBİTAK-CNRS [TBAG-U/181 (106 T716)] and İnonu University research fund (BAP 2008/03 Güdümlü) for financial support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & &Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Arduengo, A. J. & Krafczyk, R. (1998). Chem. Unserer. Z. 32, 6–14. Web of Science CrossRef CAS Google Scholar
Arslan, H., VanDerveer, D., Özdemir, İ., Demir, S. & Çetinkaya, B. (2007a). Acta Cryst. E63, m770–m771. Web of Science CSD CrossRef IUCr Journals Google Scholar
Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, I. & Çetinkaya, B. (2007b). Acta Cryst. E63, m942–m944. Web of Science CSD CrossRef IUCr Journals Google Scholar
Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2007c). Acta Cryst. E63, m1001–m1003. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dullius, J. E. L., Suarez, P. A. Z., Einloft, S., de Souza, R. F., Dupont, J., Fischer, J. & De Cian, A. (1998). Organometallics, 17, 815-819. Web of Science CSD CrossRef CAS Google Scholar
Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590. CrossRef CAS Web of Science IUCr Journals Google Scholar
Glorius, F. (2007). Topics in Organometallic Chemistry, Vol. 21, N-Heterocyclic Carbenes inTransition Metal Catalysis. Heidelberg: Springer. Google Scholar
Hermann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290–1309. CrossRef Google Scholar
Hermann, W. A. & Köcher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162–2187. CrossRef Web of Science Google Scholar
Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas,USA. Google Scholar
Littke, A. F. & Fu, G. C. (2002). Angew. Chem. Int. Ed. 41, 4176–4211. CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nolan, S. P. (2006). N-HeterocyclicCarbenes in Synthesis. Weinheim: Wiley. Google Scholar
Özdemir, I., Gürbüz, N., Gök, Y., Çetinkaya, E. & Çetinkaya, B. (2005). Synlett, 15, 2394–2396. Google Scholar
Regitz, M. (1996). Angew. Chem. Int. Ed. Engl. 35, 725–728. CrossRef CAS Web of Science Google Scholar
Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. & Bruneau, L. (2008). Eur. J. Org. Chem. 12, 2142–2149. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-heterocyclic carbenes, which can be considered phosphine mimics, have attracted considerable attentionas possible alternatives for widely used phosphine ligands (Regitz, 1996; Hermann & Köcher, 1997; Arduengo & Krafczyk, 1998; Dullius et al., 1998; Evans & Boeyens, 1989; Hermann, 2002; Littke & Fu, 2002). N-heterocyclic carbene-containing metal complexes have also revealed excellent catalytic properties in a wide range of metal-catalyzed transformations (Glorius, 2007; Nolan, 2006). Catalysts containing these ligands are useful in Heck, Suzuki and Sonogashira couplings, Buchwald Hartwig amination, olefin metathesis, hydroformylation and hydrogenation.
In recent years, we have pursued investigations on the synthesis, characterization, crystal structure, and catalytic activities of new N-heterocyclic carbene derivatives (Yaşar et al., 2008; Arslan et al., 2007a, 2007b, 2007c). In the present work, we report the preparation and characterization of a novel N-heterocyclic carbene derivative, 1,3-bis(4-(dimethylamino)benzyl)-4,5,6,7-tetrahydro-1H-1,3-diazepin-2-ium chloride, (I). The ligand was purified by re-crystallization from an ethanol:diethylether mixture (1:2) and was characterized by elemental analysis and 1H and 13C-NMR spectroscopy. The analytical and spectroscopic data are consistent with the proposed structure given in Scheme 1.
The molecular structure of the title compound, (I), is depicted in Fig. 1. The structure consists of a 1,3-bis(4-(dimethylamino)benzyl)-4,5,6,7-tetrahydro-1H-1,3-diazepin-2-ium cation and a Cl-anion. All bond lengths are in normal ranges (Allen et al., 1987). A seven-membered ring should have the chair, the boat, the twist chair or the twist boat according to Cremer & Pople (1975). The conformation of a seven-membered ring can be numerically described by four ring puckering parameters, q2, q3, ϕ2 and ϕ3. The 1,3-diazepane ring exhibits a puckered conformation, with puckering parameters Cremer & Pople (1975), q2= 0.374 (3) Å, q3 = 0.462 (3) Å, ϕ2= 347.1 (4) °, ϕ3= 115.7 (3)°, and QT= 0.595 (3) Å. The largest deviations from the mean plane are 0.403 (3) Å for atoms C3 and C3A. q2 should be 0 for a 100% twist chair form. According to Cremer & Pople ring-puckering analysis results, the 1,3-diazepane seven-membered ring can be accurately described as an intermediate form between the 44% twist chair form and the 55% twist boat form.
The crystal packing is shown in Fig. 2. Although there are no intramolecular D—H···A contacts, intermolecular C—H···Cl hydrogen bonds link the molecules of (I) into one-dimensional chains extending along the [010] direction (Fig. 3, Table 1) (Macrae et al., 2006).