organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3aR,8aR)-2,2,6,6-Tetra­methyl-4,4,8,8-tetra­phenyl­tetra­hydro-1,3-dioxolo[4,5-e][1,3,2]dioxasilepine

aDepartment of Chemistry, Morgan State University, Baltimore, MD 21251, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 9 December 2008; accepted 11 December 2008; online 17 December 2008)

The title compound, C33H34O4Si, is a dioxasilepine compound, an effective chiral dopant for the determination of high helical twisting powers in liquid crystals. Its structure consists of a five-membered dioxolo ring fused to a seven-membered dioxasilepine ring which contains two sets of phenyl rings in a twisted butterfly shape attached to the two Csp3 atoms in the ring opposite each other. Two methyl groups are attached to the Si atom in the ring and two additional methyl groups are attached to the Csp3 atom in the dioxolo ring (one of which is disordered) and which lies in an envelope pattern. The dihedral angles between the mean planes of the phenyl ring pairs are 85.9 (2) and 83.5 (1)°. The dihedral angles between the mean planes of the dioxolo ring and the two pairs of butterfly shaped phenyl rings are 46.2 (1), 67.7 (1), 35.6 (7) and 83.5 (1)°.

Related literature

For a related structure, see: Madison et al. (1998[Madison, J., Clausen, R. P., Hazell, R. G., Jacobson, H. J., Bols, M. & Perry, C. C. (1998). Acta Chem. Scand., 52, 1165-1170.]). For dioxasilepines as chiral dopants in liquid crystals, see: Kuball & Hofer (2000[Kuball, H. G. & Hofer, T. (2000). Chirality, 12, 278-286.]); Kuball et al. (1997[Kuball, H. G., Weiss, B., Beck, A. K. & Seebach, D. (1997). Helv. Chim. Acta, 80, 2507-2514.]). For puckering parameters and pseudo rotation parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1254-1358.]); Rao et al. (1981[Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.]).

[Scheme 1]

Experimental

Crystal data
  • C33H34O4Si

  • Mr = 522.69

  • Orthorhombic, P 21 21 21

  • a = 10.008 (2) Å

  • b = 17.081 (3) Å

  • c = 17.271 (3) Å

  • V = 2952.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.56 × 0.32 × 0.16 mm

Data collection
  • Siemans P2 diffractometer

  • Absorption correction: refined from ΔF (SHELXL97; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.786, Tmax = 0.982

  • 2819 measured reflections

  • 2819 independent reflections

  • 1693 reflections with I > 2σ(I)

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.119

  • S = 1.04

  • 2819 reflections

  • 388 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: XSCANS (Siemens, 2000[Siemens (2000). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dioxasilepine compounds have been found to be effective chiral dopants for the determination of high helical twisting powers in liquid crystals (Kuball et al. 2000 and 1997). We have synthesized a new related structure and its crystal structure is reported.

The title compound, C33H34O4Si, consists of a 5-membered oxolo ring fused to a 7-membered dioxasilepine ring which contains two sets of phenyl rings in a twisted butterfly shape attached to the two sp3 carbon atoms in the ring opposite each other (Fig. 1). Two methyl groups are attached to the silicon atom in the ring and two additional methyl groups are attached to the sp3 carbon atom in the dioxolo ring (one of which is disordered at C4) which lies in an envelope pattern on C1 with pseudo rotation parameters P and Tau(M) of 172° and 18.5°, respectively (Rao et al., 1981) for the refine bond C1—O2 [puckering parameters θ(2) = 0.1695 Å, Phi(2) = 80.2586° (Cremer & Pople, 1975)]. The dihedral angle between the mean planes of phenyl rings C11–C16 and C21–C26 is 85.9 (2)o and between phenyl rings C31–C36 and C41–C46 is 83.5 (1)o. Dihedreal angles between the mean planes of the dioxolo ring and the two butterfly shaped phenyl rings are 46.2 (1)o [C11–C16], 67.7 (1)o [C21–C26], 35.6 (7)o [C31–C36] and 83.5 (1)o [C41–C46], respectively.

Crystal packing is influenced by intermolecular C5A—H5A···Cg3 [3.628 (1) Å, x, y, z] and C4A—H4AA···Cg5 [3.757 (7) Å, x, y, z] π ring interactions where Cg3 and Cg5 = center of gravity of phenyl rings C21–C26 and C41–46, respectively (Fig. 2).

Related literature top

For a related structure, see: Madison et al. (1998). For dioxasilepines as chiral dopants in liquid crystals, see: Kuball et al. (1997, 2000). For puckering parameters and pseudo rotation parameters, see: Cremer & Pople (1975); Rao et al. (1981).

Experimental top

The title compound was synthesized by adding 0.13 g (1.06 mmol) of dimethylaminopyridine to a solution of 0.50 g (1.07 mmol) of (-)-trans-α,α'-(dimethyl-1,3-dioxolane-4,5-diyl)bis(diphenylmethanol) (TADDOL) in 20 ml of anhydrous ether (distilled from Na/benzophenone) under nitrogen atmosphere at room temperature. Then 0.145 g of imidazole (2.14 mmol) was added. The mixture was stirred to get a homogeneous solution. A solution of 0.138 g (1.07 mmol) dichlorodimethylsilane (distilled from CaH2) in 40 ml of anhydrous ether was added dropwise to the above solution. The mixture was stirred overnight under a nitrogen atmosphere. A white precipitate formed. The solid was filtered off through a sintered glass funnel under a blanket of nitrogen gas. Slow evaporation of the solvent under a stream of nitrogen gave white crystals (0.35 g; 62.5%). m.p 483–485 K. 1H NMR (CDCl3, CH2Cl2 standard, 300 MHz) δ 7.62, 7.60 (appears as d, J = 8 Hz, 4 H, Ar), 7.25–7.05 (m, 16 H, Ar), 5.15 (s, 2H, CH(OR), 0.52 (s, 6 H, CMe2), -0.25 (s, 6 H, SiMe2). 13C NMR (CDCl3, 75 MHz) δ 147.5, 143.1, 129.0, 127.9, 127.2, 127.1, 126.81, 126.76, 113.9, 82.2, 81.6, 27.0, -0.13.

Refinement top

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.98 Å and Uiso(H) = 0.62–2.00Ueq(C). The methyl carbon, C4, bonded to C1 is disordered with C4A at 0.38 (6) and C4B at 0.62 (6) partial occupancy. Since there was no atom present heavier that Si the absolute configuration could not be determined by X-ray methods. Hence the Friedel pairs were averaged.

Computing details top

Data collection: XSCANS (Siemens, 2000); cell refinement: XSCANS (Siemens, 2000); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing atom labeling and 50% probability displacement ellipsoids. Disordered aton C4A is shown with 0.38 (6) partial occupancy.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down the a axis.
(3aR,8aR)-2,2,6,6-Tetramethyl-4,4,8,8-tetraphenyltetrahydro-1,3- dioxolo[4,5-e][1,3,2]dioxasilepine top
Crystal data top
C33H34O4SiF(000) = 1112
Mr = 522.69Dx = 1.176 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 26 reflections
a = 10.008 (2) Åθ = 4.2–10.5°
b = 17.081 (3) ŵ = 0.11 mm1
c = 17.271 (3) ÅT = 293 K
V = 2952.4 (9) Å3Block, colorless
Z = 40.56 × 0.32 × 0.16 mm
Data collection top
Siemans P2
diffractometer
1693 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.6°
Graphite monochromatorh = 010
ω scansk = 020
Absorption correction: part of the refinement model (ΔF)
(SHELXL97; Sheldrick, 2008)
l = 020
Tmin = 0.786, Tmax = 0.9823 standard reflections every 97 reflections
2819 measured reflections intensity decay: none
2819 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0282P)2 + 0.814P]
where P = (Fo2 + 2Fc2)/3
2819 reflections(Δ/σ)max < 0.001
388 parametersΔρmax = 0.24 e Å3
14 restraintsΔρmin = 0.18 e Å3
Crystal data top
C33H34O4SiV = 2952.4 (9) Å3
Mr = 522.69Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.008 (2) ŵ = 0.11 mm1
b = 17.081 (3) ÅT = 293 K
c = 17.271 (3) Å0.56 × 0.32 × 0.16 mm
Data collection top
Siemans P2
diffractometer
2819 independent reflections
Absorption correction: part of the refinement model (ΔF)
(SHELXL97; Sheldrick, 2008)
1693 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.9823 standard reflections every 97 reflections
2819 measured reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.05414 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
2819 reflectionsΔρmin = 0.18 e Å3
388 parameters
Special details top

Experimental. Sheldrick, G.M. (anon) SHELX97 Release 97-2 (1998) I/sigma threshold for reflections = 5.000 Delta(U)/lambda**2 = 0.000 Highest even order spherical harmonic = 6 Highest odd order spherical harmonic = 3

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si0.33141 (17)0.47321 (9)0.20896 (10)0.0592 (5)
O10.1516 (4)0.7144 (2)0.1711 (2)0.0552 (10)
O20.3460 (4)0.73928 (18)0.2371 (2)0.0566 (10)
O30.3023 (3)0.5239 (2)0.1311 (2)0.0503 (9)
O40.3509 (4)0.53154 (19)0.2825 (2)0.0577 (10)
C10.3489 (5)0.6580 (3)0.2198 (3)0.0467 (14)
H1A0.41400.64860.17850.08 (2)*
C20.2078 (5)0.6398 (3)0.1892 (3)0.0451 (14)
H2A0.15540.61570.23080.038 (13)*
C30.2373 (5)0.7744 (3)0.1978 (4)0.0571 (16)
C4A0.1589 (18)0.806 (2)0.2655 (13)0.112 (8)0.52 (5)
H4AA0.14800.76610.30380.168*0.52 (5)
H4AB0.07270.82360.24810.168*0.52 (5)
H4AC0.20630.84980.28780.168*0.52 (5)
C4B0.1677 (18)0.8414 (12)0.2382 (16)0.069 (7)0.48 (5)
H4BA0.13740.82450.28820.103*0.48 (5)
H4BB0.09260.85800.20780.103*0.48 (5)
H4BC0.22890.88420.24420.103*0.48 (5)
C50.2928 (8)0.8209 (4)0.1269 (5)0.125 (3)
H5A0.33480.78530.09140.188*
H5B0.35720.85860.14450.188*
H5C0.22070.84740.10130.188*
C60.1940 (9)0.4087 (5)0.2353 (5)0.101 (3)
H6A0.11670.43950.24790.14 (4)*
H6B0.21910.37780.27930.16 (4)*
H6C0.17360.37480.19250.15 (4)*
C70.4856 (8)0.4183 (5)0.1872 (5)0.096 (3)
H7A0.55780.45440.17900.15 (4)*
H7B0.47260.38750.14130.16 (4)*
H7C0.50670.38450.22980.21 (5)*
C80.2050 (5)0.5850 (3)0.1171 (3)0.0446 (14)
C90.3913 (5)0.6119 (3)0.2929 (3)0.0475 (14)
C110.0677 (5)0.5469 (3)0.1056 (3)0.0460 (14)
C120.0482 (6)0.5767 (4)0.1375 (3)0.0620 (16)
H12A0.04480.62170.16770.036 (13)*
C130.1702 (7)0.5395 (4)0.1244 (4)0.083 (2)
H13A0.24790.56010.14580.063 (18)*
C140.1768 (8)0.4733 (4)0.0805 (4)0.079 (2)
H14A0.25850.44860.07240.12 (3)*
C150.0627 (7)0.4432 (4)0.0482 (4)0.077 (2)
H15A0.06650.39790.01840.12 (3)*
C160.0574 (6)0.4803 (4)0.0602 (3)0.0625 (16)
H16A0.13400.46010.03710.052 (16)*
C210.2468 (6)0.6290 (3)0.0434 (3)0.0508 (15)
C220.1578 (8)0.6732 (3)0.0024 (4)0.0698 (18)
H22A0.06910.67460.01830.07 (2)*
C230.1945 (10)0.7154 (5)0.0611 (4)0.092 (2)
H23A0.13160.74520.08760.16 (4)*
C240.3253 (11)0.7136 (5)0.0860 (4)0.100 (3)
H24A0.35170.74290.12870.11 (3)*
C250.4167 (9)0.6678 (5)0.0468 (5)0.101 (3)
H25A0.50490.66580.06370.13 (3)*
C260.3781 (7)0.6247 (4)0.0176 (4)0.070 (2)
H26A0.43970.59320.04320.09 (2)*
C310.5427 (5)0.6147 (3)0.3048 (3)0.0474 (14)
C320.6025 (7)0.5547 (4)0.3465 (4)0.0711 (19)
H32A0.55100.51320.36460.09 (2)*
C330.7394 (7)0.5563 (4)0.3613 (4)0.084 (2)
H33A0.77900.51540.38850.08 (2)*
C340.8153 (7)0.6169 (5)0.3363 (4)0.081 (2)
H34A0.90640.61800.34690.067 (18)*
C350.7572 (6)0.6772 (4)0.2951 (4)0.0707 (19)
H35A0.80950.71860.27760.07 (2)*
C360.6220 (6)0.6763 (3)0.2797 (3)0.0545 (15)
H36A0.58360.71730.25220.07 (2)*
C410.3189 (6)0.6414 (3)0.3661 (3)0.0532 (14)
C420.2127 (6)0.6020 (5)0.3967 (4)0.0684 (19)
H42A0.18340.55610.37310.07 (2)*
C430.1473 (8)0.6293 (6)0.4625 (4)0.094 (2)
H43A0.07430.60180.48180.10 (2)*
C440.1888 (9)0.6958 (6)0.4992 (5)0.103 (3)
H44A0.14500.71380.54320.13 (3)*
C450.2967 (8)0.7356 (5)0.4695 (4)0.089 (2)
H45A0.32620.78100.49390.08 (2)*
C460.3619 (7)0.7092 (4)0.4038 (4)0.0720 (18)
H46A0.43490.73680.38460.10 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si0.0568 (10)0.0456 (8)0.0752 (12)0.0000 (9)0.0127 (10)0.0017 (10)
O10.048 (2)0.050 (2)0.067 (2)0.003 (2)0.016 (2)0.0028 (19)
O20.062 (3)0.0385 (19)0.069 (3)0.006 (2)0.022 (2)0.0059 (19)
O30.051 (2)0.0468 (19)0.053 (2)0.0058 (19)0.0000 (18)0.003 (2)
O40.069 (2)0.050 (2)0.054 (2)0.007 (2)0.005 (2)0.005 (2)
C10.051 (4)0.042 (3)0.047 (3)0.002 (3)0.000 (3)0.006 (3)
C20.043 (3)0.046 (3)0.047 (4)0.003 (3)0.003 (3)0.001 (3)
C30.045 (3)0.046 (3)0.079 (5)0.004 (3)0.026 (3)0.019 (4)
C4A0.096 (9)0.102 (12)0.138 (11)0.034 (9)0.031 (8)0.040 (9)
C4B0.071 (8)0.045 (8)0.090 (11)0.016 (7)0.015 (7)0.018 (7)
C50.133 (7)0.096 (6)0.147 (7)0.046 (6)0.065 (7)0.059 (6)
C60.102 (7)0.088 (5)0.114 (7)0.041 (6)0.035 (5)0.024 (6)
C70.095 (6)0.089 (5)0.105 (7)0.045 (5)0.030 (5)0.024 (6)
C80.043 (3)0.047 (3)0.044 (3)0.001 (3)0.007 (3)0.003 (3)
C90.046 (3)0.053 (3)0.043 (3)0.001 (3)0.007 (3)0.012 (3)
C110.047 (3)0.050 (4)0.041 (3)0.003 (3)0.002 (3)0.006 (3)
C120.053 (4)0.064 (4)0.069 (4)0.013 (3)0.004 (3)0.022 (4)
C130.048 (4)0.107 (6)0.094 (5)0.014 (4)0.015 (4)0.020 (5)
C140.071 (5)0.094 (5)0.072 (5)0.030 (5)0.005 (4)0.024 (4)
C150.074 (5)0.087 (5)0.070 (4)0.018 (4)0.001 (4)0.023 (4)
C160.056 (4)0.073 (4)0.059 (4)0.002 (4)0.008 (3)0.021 (4)
C210.054 (4)0.052 (4)0.046 (3)0.005 (3)0.004 (3)0.010 (3)
C220.072 (5)0.074 (4)0.063 (4)0.011 (4)0.003 (4)0.017 (4)
C230.118 (7)0.095 (5)0.062 (5)0.018 (6)0.000 (5)0.017 (5)
C240.150 (9)0.102 (6)0.047 (5)0.054 (7)0.009 (6)0.003 (4)
C250.092 (7)0.134 (8)0.078 (6)0.037 (6)0.031 (5)0.013 (6)
C260.061 (5)0.086 (5)0.064 (4)0.016 (4)0.021 (4)0.000 (4)
C310.048 (3)0.048 (3)0.047 (3)0.009 (3)0.005 (3)0.005 (3)
C320.077 (5)0.079 (5)0.057 (4)0.003 (4)0.011 (4)0.011 (4)
C330.080 (6)0.079 (5)0.093 (6)0.024 (5)0.028 (5)0.008 (5)
C340.048 (5)0.114 (6)0.080 (5)0.023 (5)0.017 (4)0.026 (5)
C350.041 (4)0.089 (5)0.082 (5)0.002 (4)0.001 (4)0.009 (5)
C360.048 (4)0.055 (4)0.060 (4)0.004 (3)0.001 (3)0.001 (4)
C410.045 (3)0.068 (4)0.047 (4)0.007 (3)0.002 (3)0.003 (3)
C420.063 (5)0.095 (5)0.048 (4)0.002 (4)0.007 (3)0.005 (4)
C430.063 (5)0.146 (8)0.075 (6)0.002 (6)0.012 (5)0.005 (6)
C440.076 (6)0.154 (9)0.078 (6)0.026 (6)0.026 (5)0.006 (6)
C450.112 (7)0.096 (6)0.060 (5)0.020 (5)0.002 (5)0.031 (4)
C460.073 (5)0.078 (4)0.064 (4)0.000 (4)0.007 (4)0.013 (4)
Geometric parameters (Å, º) top
Si—O41.626 (4)C13—C141.363 (8)
Si—O31.626 (4)C13—H13A0.9300
Si—C61.820 (7)C14—C151.370 (9)
Si—C71.845 (7)C14—H14A0.9300
O1—C31.413 (6)C15—C161.374 (8)
O1—C21.428 (6)C15—H15A0.9300
O2—C31.416 (6)C16—H16A0.9300
O2—C11.420 (5)C21—C221.366 (8)
O3—C81.448 (6)C21—C261.390 (8)
O4—C91.442 (6)C22—C231.363 (9)
C1—C21.539 (7)C22—H22A0.9300
C1—C91.548 (6)C23—C241.378 (12)
C1—H1A0.9800C23—H23A0.9300
C2—C81.557 (7)C24—C251.381 (11)
C2—H2A0.9800C24—H24A0.9300
C3—C4B1.511 (8)C25—C261.387 (9)
C3—C4A1.511 (9)C25—H25A0.9300
C3—C51.561 (9)C26—H26A0.9300
C4A—H4AA0.9600C31—C361.387 (7)
C4A—H4AB0.9600C31—C321.388 (7)
C4A—H4AC0.9600C32—C331.394 (9)
C4B—H4BA0.9600C32—H32A0.9300
C4B—H4BB0.9600C33—C341.355 (9)
C4B—H4BC0.9600C33—H33A0.9300
C5—H5A0.9600C34—C351.380 (9)
C5—H5B0.9600C34—H34A0.9300
C5—H5C0.9600C35—C361.379 (8)
C6—H6A0.9600C35—H35A0.9300
C6—H6B0.9600C36—H36A0.9300
C6—H6C0.9600C41—C421.365 (8)
C7—H7A0.9600C41—C461.396 (8)
C7—H7B0.9600C42—C431.392 (9)
C7—H7C0.9600C42—H42A0.9300
C8—C111.534 (7)C43—C441.366 (10)
C8—C211.537 (7)C43—H43A0.9300
C9—C311.530 (7)C44—C451.375 (10)
C9—C411.542 (7)C44—H44A0.9300
C11—C121.380 (7)C45—C461.385 (9)
C11—C161.385 (7)C45—H45A0.9300
C12—C131.396 (8)C46—H46A0.9300
C12—H12A0.9300
O4—Si—O3109.93 (17)C12—C11—C8123.0 (5)
O4—Si—C6105.5 (4)C16—C11—C8119.2 (5)
O3—Si—C6113.2 (3)C11—C12—C13120.2 (6)
O4—Si—C7111.8 (3)C11—C12—H12A119.9
O3—Si—C7104.6 (3)C13—C12—H12A119.9
C6—Si—C7112.1 (5)C14—C13—C12120.7 (6)
C3—O1—C2109.7 (4)C14—C13—H13A119.7
C3—O2—C1109.1 (4)C12—C13—H13A119.7
C8—O3—Si130.0 (3)C13—C14—C15119.8 (7)
C9—O4—Si135.6 (3)C13—C14—H14A120.1
O2—C1—C2104.6 (4)C15—C14—H14A120.1
O2—C1—C9109.3 (4)C14—C15—C16119.7 (6)
C2—C1—C9115.4 (4)C14—C15—H15A120.1
O2—C1—H1A109.1C16—C15—H15A120.1
C2—C1—H1A109.1C15—C16—C11121.9 (6)
C9—C1—H1A109.1C15—C16—H16A119.1
O1—C2—C1104.8 (4)C11—C16—H16A119.1
O1—C2—C8110.7 (4)C22—C21—C26118.7 (6)
C1—C2—C8114.4 (4)C22—C21—C8121.5 (5)
O1—C2—H2A108.9C26—C21—C8119.9 (6)
C1—C2—H2A108.9C23—C22—C21122.2 (8)
C8—C2—H2A108.9C23—C22—H22A118.9
O1—C3—O2108.4 (4)C21—C22—H22A118.9
O1—C3—C4B114.8 (9)C22—C23—C24119.7 (9)
O2—C3—C4B116.9 (10)C22—C23—H23A120.2
O1—C3—C4A101.5 (12)C24—C23—H23A120.2
O2—C3—C4A100.4 (13)C23—C24—C25119.3 (8)
C4B—C3—C4A29.4 (9)C23—C24—H24A120.4
O1—C3—C5109.3 (5)C25—C24—H24A120.4
O2—C3—C5108.6 (5)C24—C25—C26120.6 (8)
C4B—C3—C598.0 (13)C24—C25—H25A119.7
C4A—C3—C5127.4 (18)C26—C25—H25A119.7
C3—C4A—H4AA109.5C25—C26—C21119.5 (8)
C3—C4A—H4AB109.5C25—C26—H26A120.3
C3—C4A—H4AC109.5C21—C26—H26A120.3
C3—C4B—H4BA109.5C36—C31—C32118.4 (5)
C3—C4B—H4BB109.5C36—C31—C9123.3 (5)
H4BA—C4B—H4BB109.5C32—C31—C9118.3 (5)
C3—C4B—H4BC109.5C31—C32—C33120.3 (7)
H4BA—C4B—H4BC109.5C31—C32—H32A119.9
H4BB—C4B—H4BC109.5C33—C32—H32A119.9
C3—C5—H5A109.5C34—C33—C32120.5 (7)
C3—C5—H5B109.5C34—C33—H33A119.7
H5A—C5—H5B109.5C32—C33—H33A119.7
C3—C5—H5C109.5C33—C34—C35119.9 (7)
H5A—C5—H5C109.5C33—C34—H34A120.0
H5B—C5—H5C109.5C35—C34—H34A120.0
Si—C6—H6A109.5C36—C35—C34120.3 (7)
Si—C6—H6B109.5C36—C35—H35A119.9
H6A—C6—H6B109.5C34—C35—H35A119.9
Si—C6—H6C109.5C35—C36—C31120.7 (6)
H6A—C6—H6C109.5C35—C36—H36A119.7
H6B—C6—H6C109.5C31—C36—H36A119.7
Si—C7—H7A109.5C42—C41—C46118.0 (6)
Si—C7—H7B109.5C42—C41—C9121.4 (6)
H7A—C7—H7B109.5C46—C41—C9120.6 (5)
Si—C7—H7C109.5C41—C42—C43121.1 (7)
H7A—C7—H7C109.5C41—C42—H42A119.4
H7B—C7—H7C109.5C43—C42—H42A119.4
O3—C8—C11108.6 (4)C44—C43—C42121.0 (8)
O3—C8—C21107.9 (4)C44—C43—H43A119.5
C11—C8—C21110.1 (4)C42—C43—H43A119.5
O3—C8—C2106.7 (4)C43—C44—C45118.5 (8)
C11—C8—C2112.0 (4)C43—C44—H44A120.7
C21—C8—C2111.4 (4)C45—C44—H44A120.7
O4—C9—C31109.0 (4)C44—C45—C46120.9 (8)
O4—C9—C41106.4 (4)C44—C45—H45A119.5
C31—C9—C41110.1 (4)C46—C45—H45A119.5
O4—C9—C1107.8 (4)C45—C46—C41120.5 (7)
C31—C9—C1111.5 (4)C45—C46—H46A119.8
C41—C9—C1111.9 (4)C41—C46—H46A119.8
C12—C11—C16117.8 (5)
O4—Si—O3—C851.4 (4)C11—C12—C13—C140.3 (10)
C6—Si—O3—C866.3 (5)C12—C13—C14—C150.6 (10)
C7—Si—O3—C8171.5 (5)C13—C14—C15—C160.3 (10)
O3—Si—O4—C924.8 (5)C14—C15—C16—C111.4 (10)
C6—Si—O4—C9147.2 (5)C12—C11—C16—C151.7 (8)
C7—Si—O4—C990.8 (6)C8—C11—C16—C15179.5 (6)
C3—O2—C1—C218.7 (6)O3—C8—C21—C22160.2 (5)
C3—O2—C1—C9142.8 (4)C11—C8—C21—C2241.9 (7)
C3—O1—C2—C18.0 (5)C2—C8—C21—C2283.0 (6)
C3—O1—C2—C8131.9 (5)O3—C8—C21—C2620.4 (7)
O2—C1—C2—O116.2 (5)C11—C8—C21—C26138.7 (5)
C9—C1—C2—O1136.3 (4)C2—C8—C21—C2696.4 (6)
O2—C1—C2—C8137.6 (4)C26—C21—C22—C232.5 (9)
C9—C1—C2—C8102.2 (5)C8—C21—C22—C23177.0 (6)
C2—O1—C3—O23.2 (6)C21—C22—C23—C240.5 (10)
C2—O1—C3—C4B136.1 (14)C22—C23—C24—C251.2 (12)
C2—O1—C3—C4A108.4 (16)C23—C24—C25—C260.8 (12)
C2—O1—C3—C5114.9 (5)C24—C25—C26—C211.1 (11)
C1—O2—C3—O114.3 (6)C22—C21—C26—C252.7 (9)
C1—O2—C3—C4B146.1 (13)C8—C21—C26—C25176.7 (6)
C1—O2—C3—C4A120.3 (16)O4—C9—C31—C36147.2 (5)
C1—O2—C3—C5104.3 (5)C41—C9—C31—C3696.5 (6)
Si—O3—C8—C1177.0 (5)C1—C9—C31—C3628.4 (7)
Si—O3—C8—C21163.7 (3)O4—C9—C31—C3236.3 (7)
Si—O3—C8—C243.9 (5)C41—C9—C31—C3280.0 (6)
O1—C2—C8—O3160.3 (4)C1—C9—C31—C32155.2 (5)
C1—C2—C8—O342.1 (5)C36—C31—C32—C331.0 (9)
O1—C2—C8—C1181.0 (5)C9—C31—C32—C33177.6 (6)
C1—C2—C8—C11160.8 (4)C31—C32—C33—C341.1 (11)
O1—C2—C8—C2142.8 (6)C32—C33—C34—C350.8 (11)
C1—C2—C8—C2175.3 (5)C33—C34—C35—C360.5 (10)
Si—O4—C9—C3191.0 (5)C34—C35—C36—C310.5 (10)
Si—O4—C9—C41150.3 (4)C32—C31—C36—C350.7 (9)
Si—O4—C9—C130.1 (6)C9—C31—C36—C35177.2 (6)
O2—C1—C9—O4161.0 (4)O4—C9—C41—C4216.0 (6)
C2—C1—C9—O443.5 (6)C31—C9—C41—C42133.9 (5)
O2—C1—C9—C3179.5 (5)C1—C9—C41—C42101.5 (6)
C2—C1—C9—C31163.0 (4)O4—C9—C41—C46163.1 (5)
O2—C1—C9—C4144.4 (6)C31—C9—C41—C4645.2 (7)
C2—C1—C9—C4173.1 (5)C1—C9—C41—C4679.4 (6)
O3—C8—C11—C12138.0 (5)C46—C41—C42—C431.3 (9)
C21—C8—C11—C12104.1 (6)C9—C41—C42—C43179.6 (6)
C2—C8—C11—C1220.4 (7)C41—C42—C43—C440.9 (11)
O3—C8—C11—C1643.2 (6)C42—C43—C44—C450.2 (12)
C21—C8—C11—C1674.7 (6)C43—C44—C45—C460.2 (11)
C2—C8—C11—C16160.8 (4)C44—C45—C46—C410.2 (10)
C16—C11—C12—C130.8 (8)C42—C41—C46—C450.9 (9)
C8—C11—C12—C13179.6 (6)C9—C41—C46—C45180.0 (6)

Experimental details

Crystal data
Chemical formulaC33H34O4Si
Mr522.69
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.008 (2), 17.081 (3), 17.271 (3)
V3)2952.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.56 × 0.32 × 0.16
Data collection
DiffractometerSiemans P2
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(SHELXL97; Sheldrick, 2008)
Tmin, Tmax0.786, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
2819, 2819, 1693
Rint?
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.119, 1.04
No. of reflections2819
No. of parameters388
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: XSCANS (Siemens, 2000), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

 

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1254–1358.  Google Scholar
First citationKuball, H. G. & Hofer, T. (2000). Chirality, 12, 278–286.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKuball, H. G., Weiss, B., Beck, A. K. & Seebach, D. (1997). Helv. Chim. Acta, 80, 2507–2514.  Web of Science CrossRef CAS Google Scholar
First citationMadison, J., Clausen, R. P., Hazell, R. G., Jacobson, H. J., Bols, M. & Perry, C. C. (1998). Acta Chem. Scand., 52, 1165–1170.  Google Scholar
First citationRao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (2000). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds