metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m111-m112

1,3-Bis(thio­phen-2-ylmeth­yl)-3,4,5,6-tetra­hydro­pyrimidinium tri­chlorido(η6-p-cymene)ruthenate(II)

aDepartment of Natural Sciences, Fayetteville State University, Fayetteville, NC 28301, USA, bDepartment of Chemistry, Faculty of Pharmacy, Mersin University, Mersin, TR 33169, Turkey, cDepartment of Chemistry, Clemson University, Clemson, SC 29634, USA, dDepartment of Chemistry, Faculty of Science and Arts, İnönü University, Malatya, TR 44280, Turkey, and eDepartment of Chemistry, Faculty of Science, Ege University, Bornova-İzmir, TR 35100, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com

(Received 10 December 2008; accepted 16 December 2008; online 20 December 2008)

The asymmetric unit of the title compound, (C14H17N2S2)[Ru(C10H14)Cl3], contains a 1,3-bis­(thio­phen-2-ylmeth­yl)-3,4,5,6-tetra­hydro­pyrimidinium cation and a trichlorido(η6-p-cymene)ruthenate(II) anion. The Ru atom exhibits a distorted octa­hedral coordination with the benzene ring of the p-cymene ligand formally occupying three sites and three chloride atoms occupying the other three sites. The N—C bond lengths of the N—C—N unit of the pyrimidinium cation are shorter than the average single C—N bond length of 1.48 Å, thus showing double-bond character, indicating a partial electron delocalization within the N—C—N fragment. The pyrimidine ring has an envelope conformation. Four inter­molecular C—H⋯Cl hydrogen bonds generate a three-dimensional hydrogen-bonded framework.

Related literature

For the synthesis, see: Yaşar et al. (2008[Yaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. L. & Bruneau, L. (2008). Eur. J. Org. Chem. 12, 2142-2149.]); Özdemir et al. (2005a[Özdemir, İ., Yaşar, S. & Çetinkaya, B. (2005a). Transition Met. Chem. 30, 831-835.], 2005b[Özdemir, İ., Demir, S., Çetinkaya, B. & Çetinkaya, E. (2005b). J. Organomet. Chem. 690, 5849-5855.], 2007[Özdemir, İ., Demir, S., Çetinkaya, B., Toupet, L., Castarlanes, R., Fischmeister, C. & Dixneuf, P. H. (2007). Eur. J. Inorg. Chem. 18, 2862-2869.], 2008[Özdemir, İ., Gürbüz, N., Gök, Y. & Çetinkaya, B. (2008). Heteroat. Chem. 19, 82-86.]). For general background, see: Herrmann et al. (1995[Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2371-2374.]); Herrmann (2002[Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.]); Littke & Fu (2002[Littke, A. F. & Fu, G. C. (2002). Angew. Chem. Int. Ed. 41, 4176-4211.]); Özdemir et al. (2005c[Özdemir, İ., Demir, S. & Çetinkaya, B. (2005c). Tetrahedron, 61, 9791-9798.]); Arduengo & Krafczyc (1998[Arduengo, A. J. & Krafczyc, R. (1998). Chem. Ztg, 32, 6-14.]); Navarro et al. (2006[Navarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem. 71, 685-692.]). For related compounds, see: Liu et al. (2004[Liu, L., Zhang, Q.-F. & Leung, W.-H. (2004). Acta Cryst. E60, m506-m508.]); Therrien et al. (2004[Therrien, B., Frein, S. & Süss-Fink, G. (2004). Acta Cryst. E60, m1666-m1668.]); Arslan et al. (2004a[Arslan, H., Vanderveer, D., Özdemir, I., Çetinkaya, B. & Yaşar, S. (2004a). Z. Kristallogr. New Cryst. Struct. 219, 44-46.],b[Arslan, H., VanDerveer, D., Özdemir, I., Çetinkaya, B. & Demir, S. (2004b). Z. Kristallogr. New Cryst. Struct. 219, 377-378.], 2005a[Arslan, H., VanDerveer, D., Özdemir, I., Çetinkaya, B. & Demir, S. (2005a). J. Chem. Crystallogr. 35, 491-495.],b[Arslan, H., VanDerveer, D., Özdemir, I., Yaşar, S. & Çetinkaya, B. (2005b). Acta Cryst. E61, m1873-m1875.], 2007a[Arslan, H., VanDerveer, D., Özdemir, İ., Demir, S. & Çetinkaya, B. (2007a). Acta Cryst. E63, m770-m771.],b[Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, I. & Çetinkaya, B. (2007b). Acta Cryst. E63, m942-m944.],c[Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2007c). Acta Cryst. E63, m1001-m1003.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H17N2S2)[Ru(C10H14)Cl3]

  • Mr = 619.05

  • Triclinic, [P \overline 1]

  • a = 9.989 (2) Å

  • b = 11.404 (2) Å

  • c = 12.922 (3) Å

  • α = 82.10 (3)°

  • β = 67.61 (3)°

  • γ = 72.59 (3)°

  • V = 1298.2 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 153 (2) K

  • 0.24 × 0.12 × 0.07 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.780, Tmax = 0.928

  • 9185 measured reflections

  • 4606 independent reflections

  • 4048 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.076

  • S = 1.12

  • 4606 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1i 0.96 2.64 3.519 (4) 153
C1—H1⋯Cl2i 0.96 2.82 3.478 (4) 126
C10—H10A⋯Cl3i 0.96 2.75 3.654 (4) 156
C14—H14⋯Cl1ii 0.96 2.63 3.584 (4) 175
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-heterocyclic carbene ligands have emerged as one of the most important classes of compounds used for catalytic reactions such as Suzuki-Miyura, Sonogashira, Stille and Heck reactions (Herrmann et al., 1995; Navarro et al., 2006; Arduengo & Krafczyc, 1998; Herrmann, 2002; Littke & Fu, 2002). Recently, we have focused on the synthesis, characterization and application of palladium, platinum and ruthenium N-heterocyclic carbene complexes as catalysts (Yaşar et al., 2008; Arslan et al., 2007a, 2007b,2007c, 2004a, 2004b, 2005a, 2005b).

To continue our studies on this topic (Özdemir et al. (2005a, 2005b, 2005c, 2007, 2008)), we report herein the X-ray crystal structure of an N-heterocyclic carbene cation (1,3-bis(thiophen-2-ylmethyl)-3,4,5,6-tetrahydropyrimidinium) and trichloro(η6-p-cymene)ruthenat(II) anion compound. The molecular structure of the title compound, (I), is depicted in Fig. 1.

The structure of the title compound consists of [C14H17N2S2]+ cations and [C10H14Cl3Ru]- anions. These groups are connected with four intermolecular C—H···Cl hydrogen bonds, thus forming a three-dimensional hydrogen-bonded network (Fig. 2). The intermolecular contacts are also listed in Table 1.

The thiophene rings are almost planar, while the pyrimidin ring is not planar. The deviations from planarity for the pyrimidin ring are C1 0.111 (4), N1 0.013 (3), C2 0.207 (4), C3 0.328 (4), C4 0.229 (4), and N2 0.010 (3) Å. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the pyrimidin ring are Q = 0.464 (4) Å, Θ = 55.1 (5) ° and ϕ = 236.6 (5)°, q2 = 0.381 (4) Å, and ΔC2(C1) = 2.8 (4), ΔCs(C1) = 66.6 (3). According to these results, the pyrimidin ring adopts an envelope conformation.

The coordination geometry of ruthenium is pseudooctahedral, with an average Ru—Cl bond distance of 2.427 Å. The ruthenium atom exhibits a distorted octahedral coordination with the benzene ring of the p-cymene ligand formally occupying three sites and three chloride atoms occupying three other sites. The distance between the centroid of the p-cymene ring and ruthenium atom is 1.972 (3) Å, which is longer than reported in other Ruthenium compounds (Liu et al., 2004; Therrien et al., 2004). All the other bond lengths in (I) are in normal ranges (Allen et al., 1987).

Some C—N bond lengths (N1—C1 = 1.313 (4) Å and N2—C1 = 1.312 (4) Å) for the 1,3-bis(thiophen-2-ylmethyl)-3,4,5,6-tetrahydropyrimidinium cation are shorter than the average single C—N bond length of 1.48 Å, thus showing double bond character in these C—N bonds. The other C—N bond lengths (N1—C2 1.468 (4), N1—C10 1.475 (4), N2—C5 1.466 (4) and N2—C4 1.469 (4) Å) are in agreement with the expected 1.48 Å C—N single bond lengths. This information indicates a partial electron delocalization within the N1—C1—N2 fragment.

Related literature top

For the synthesis, see: Yaşar et al. (2008); Özdemir et al. (2005a, 2005b, 2007, 2008). For general background, see: Herrmann et al. (1995); Herrmann (2002); Littke & Fu (2002); Özdemir et al. (2005c); Arduengo & Krafczyc (1998); Navarro et al. (2006). For related compounds, see: Liu et al. (2004); Therrien et al. (2004); Arslan et al. (2004a,b, 2005a,b, 2007a,b,c). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983). For bond-length data, see: Allen et al. (1987).

Experimental top

A suspension of 1,3-bis(thiophen-2ylmethyl)-3,4,5,6-tetrahydropyrimidinium chloride (1.1 mmol), Cs2CO3 (1.2 mmol) and [RuCl2(p-cymene)] (0.5 mmol) was heated under reflux in degassed toluene (20 ml) for 7 h. The reaction mixture was then filtered while hot, and the volume was reduced to about 10 ml before addition of n-hexane (15 ml) (Scheme 2). The precipitate formed was crystallized from CH2Cl2/diethylether (5:15 mL) to give complex as red-brown crystals. Yields: 0.232 g; 75%. M.p.: 235–236 oC. 1H NMR (CDCl3) δ: 1.38 (d, 6H, J = 6.9 Hz, CH3(C6H4)CH(CH3)2), 1.86 (quin., 2H, J = 6 Hz, NCH2CH2CH2N), 2.31 (s, 3H,CH3(C6H4)CH(CH3)2), 3.17 (m, 1H, CH3(C6H4)CH(CH3)2), 3.25 (t, 4H, J = 6 Hz, NCH2CH2CH2N), 4.75 (s, 4H, CH2C4H3S), 5.32 and 5.57 (d, 4H, J = 5.8 Hz, CH3(C6H4)CH(CH3)2), 7.05–7.64 (m, 6H, C4H3S), 8.91 (s, 1H, 2-CH). 13C NMR (CDCl3) δ: 19.0 (CH3(C6H4)CH(CH3)2), 19.1 (NCH2CH2CH2N), 22.3 (CH3(C6H4)CH(CH3)2), 30.8 (CH3(C6H4)CH(CH3)2), 42.3 (NCH2CH2CH2N), 54.5 (CH2C4H3S), 79.7, 81.8, 96.4 and 100.8 (CH3(C6H4)CH(CH3)2), 126.7, 127.5, 129.2 and 135.9 (C4H3S), 159.7 (2-CH). Anal. Calc. for C24H31S2N2RuCl3: C, 46.56; H, 5.05; N, 4.53%. Found: C, 47.19; H, 5.15; N, 4.71%.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalClear (Rigaku/MSC, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I).
[Figure 3] Fig. 3. The formetion of the title compound.
1,3-Bis(thiophen-2-ylmethyl)-3,4,5,6-tetrahydropyrimidinium trichlorido(η6-p-cymene)ruthenate(II) top
Crystal data top
(C14H17N2S2)[Ru(C10H14)Cl3]Z = 2
Mr = 619.05F(000) = 632
Triclinic, P1Dx = 1.584 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.989 (2) ÅCell parameters from 4238 reflections
b = 11.404 (2) Åθ = 2.6–26.4°
c = 12.922 (3) ŵ = 1.09 mm1
α = 82.10 (3)°T = 153 K
β = 67.61 (3)°Rod, red
γ = 72.59 (3)°0.24 × 0.12 × 0.07 mm
V = 1298.2 (6) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
4606 independent reflections
Radiation source: Sealed Tube4048 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.020
Detector resolution: 14.6306 pixels mm-1θmax = 25.2°, θmin = 2.6°
ω scansh = 1111
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1313
Tmin = 0.780, Tmax = 0.928l = 1215
9185 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0324P)2 + 1.2338P]
where P = (Fo2 + 2Fc2)/3
4606 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
(C14H17N2S2)[Ru(C10H14)Cl3]γ = 72.59 (3)°
Mr = 619.05V = 1298.2 (6) Å3
Triclinic, P1Z = 2
a = 9.989 (2) ÅMo Kα radiation
b = 11.404 (2) ŵ = 1.09 mm1
c = 12.922 (3) ÅT = 153 K
α = 82.10 (3)°0.24 × 0.12 × 0.07 mm
β = 67.61 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
4606 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
4048 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.928Rint = 0.020
9185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.12Δρmax = 0.61 e Å3
4606 reflectionsΔρmin = 0.58 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.38371 (3)0.30813 (2)0.14309 (2)0.01843 (9)
Cl10.26136 (9)0.23176 (6)0.32961 (6)0.02416 (17)
Cl20.52125 (9)0.38864 (7)0.22412 (7)0.02633 (18)
Cl30.18305 (9)0.49582 (7)0.19463 (7)0.02786 (18)
C150.2964 (4)0.2481 (3)0.0344 (3)0.0228 (7)
C160.3788 (4)0.1460 (3)0.0795 (3)0.0235 (7)
H160.33140.08290.11910.028*
C170.5297 (4)0.1327 (3)0.0687 (3)0.0269 (7)
H170.58280.06120.09980.032*
C180.6015 (4)0.2255 (3)0.0118 (3)0.0275 (7)
C190.5197 (4)0.3320 (3)0.0321 (3)0.0263 (7)
H190.56600.39650.06920.032*
C200.3713 (4)0.3422 (3)0.0210 (3)0.0241 (7)
H200.31780.41420.05140.029*
C210.1370 (4)0.2648 (3)0.0438 (3)0.0293 (7)
H210.08360.34980.05790.035*
C220.0538 (4)0.1876 (4)0.1380 (3)0.0413 (9)
H22A0.09310.10260.11840.062*
H22B0.05140.21400.14930.062*
H22C0.06730.19750.20570.062*
C230.1396 (5)0.2341 (5)0.0692 (3)0.0540 (12)
H23A0.20070.27740.12840.081*
H23B0.03910.25860.06950.081*
H23C0.18080.14730.08040.081*
C240.7590 (4)0.2154 (4)0.0009 (3)0.0415 (9)
H24A0.78890.15090.05030.062*
H24B0.76400.29180.02040.062*
H24C0.82530.19690.07490.062*
S10.88600 (10)0.14274 (7)0.52353 (8)0.0311 (2)
S20.82905 (10)0.82421 (9)0.36678 (9)0.0379 (2)
N10.7975 (3)0.4626 (2)0.4658 (2)0.0205 (5)
N20.6275 (3)0.6428 (2)0.4401 (2)0.0217 (6)
C10.7099 (3)0.5733 (3)0.4956 (3)0.0212 (6)
H10.70590.60530.56200.025*
C20.8165 (4)0.4094 (3)0.3623 (3)0.0306 (8)
H2A0.75050.35750.37900.037*
H2B0.91800.36000.32960.037*
C30.7812 (4)0.5106 (3)0.2804 (3)0.0287 (7)
H3A0.77920.47580.21770.034*
H3B0.85840.55310.25310.034*
C40.6305 (4)0.6005 (3)0.3367 (3)0.0259 (7)
H4A0.61440.66960.28700.031*
H4B0.55150.56140.35380.031*
C50.5506 (4)0.7712 (3)0.4710 (3)0.0251 (7)
H5A0.53650.78040.54750.030*
H5B0.45320.79260.46510.030*
C60.6390 (4)0.8577 (3)0.3967 (3)0.0236 (7)
C70.5853 (4)0.9710 (3)0.3540 (3)0.0299 (7)
H70.48221.00590.36100.036*
C80.7015 (5)1.0309 (3)0.2979 (3)0.0361 (9)
H80.68481.11140.26340.043*
C90.8369 (5)0.9630 (3)0.2984 (3)0.0396 (9)
H90.92740.98920.26440.048*
C100.8822 (4)0.3889 (3)0.5353 (3)0.0223 (6)
H10A0.87440.43960.59190.027*
H10B0.98650.36100.48930.027*
C110.8250 (3)0.2799 (2)0.5904 (3)0.0202 (6)
C120.7240 (4)0.2726 (3)0.6959 (3)0.0283 (7)
H120.67720.33940.74680.034*
C130.6955 (4)0.1548 (3)0.7223 (3)0.0329 (8)
H130.62660.13400.79290.039*
C140.7752 (4)0.0756 (3)0.6381 (3)0.0315 (8)
H140.77060.00780.64170.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01972 (14)0.01801 (13)0.01928 (14)0.00846 (9)0.00606 (11)0.00118 (9)
Cl10.0309 (4)0.0229 (4)0.0195 (4)0.0138 (3)0.0051 (3)0.0002 (3)
Cl20.0284 (4)0.0307 (4)0.0263 (4)0.0151 (3)0.0100 (4)0.0045 (3)
Cl30.0270 (4)0.0215 (4)0.0339 (4)0.0038 (3)0.0104 (4)0.0048 (3)
C150.0270 (17)0.0242 (15)0.0205 (16)0.0072 (13)0.0104 (14)0.0056 (13)
C160.0302 (18)0.0184 (14)0.0228 (16)0.0097 (12)0.0065 (14)0.0052 (12)
C170.0283 (18)0.0237 (15)0.0237 (17)0.0007 (13)0.0061 (15)0.0085 (13)
C180.0225 (17)0.0365 (18)0.0220 (17)0.0069 (14)0.0030 (14)0.0128 (14)
C190.0278 (18)0.0365 (17)0.0169 (16)0.0164 (14)0.0036 (14)0.0040 (14)
C200.0305 (18)0.0237 (15)0.0200 (16)0.0098 (13)0.0097 (14)0.0009 (13)
C210.0239 (18)0.0356 (18)0.0310 (19)0.0116 (14)0.0091 (15)0.0032 (15)
C220.034 (2)0.066 (3)0.032 (2)0.0290 (19)0.0075 (18)0.0043 (19)
C230.044 (3)0.101 (4)0.035 (2)0.040 (3)0.021 (2)0.008 (2)
C240.0243 (19)0.062 (2)0.038 (2)0.0107 (17)0.0076 (18)0.0133 (19)
S10.0322 (5)0.0171 (4)0.0397 (5)0.0064 (3)0.0067 (4)0.0064 (3)
S20.0294 (5)0.0416 (5)0.0460 (6)0.0159 (4)0.0183 (4)0.0163 (4)
N10.0258 (14)0.0147 (11)0.0224 (14)0.0056 (10)0.0095 (12)0.0022 (10)
N20.0220 (14)0.0208 (12)0.0227 (14)0.0070 (10)0.0077 (12)0.0002 (11)
C10.0242 (16)0.0193 (14)0.0207 (16)0.0117 (12)0.0045 (14)0.0001 (12)
C20.039 (2)0.0231 (16)0.0313 (19)0.0050 (14)0.0151 (17)0.0069 (14)
C30.0338 (19)0.0314 (17)0.0236 (17)0.0093 (14)0.0113 (16)0.0051 (14)
C40.0288 (18)0.0279 (16)0.0261 (17)0.0112 (13)0.0128 (15)0.0004 (14)
C50.0206 (16)0.0211 (15)0.0306 (18)0.0015 (12)0.0091 (15)0.0007 (13)
C60.0245 (17)0.0241 (15)0.0235 (17)0.0059 (13)0.0106 (14)0.0007 (13)
C70.036 (2)0.0210 (15)0.0309 (19)0.0052 (14)0.0125 (16)0.0002 (14)
C80.058 (3)0.0217 (16)0.031 (2)0.0154 (16)0.0158 (19)0.0032 (14)
C90.052 (3)0.043 (2)0.033 (2)0.0312 (19)0.0139 (19)0.0075 (17)
C100.0242 (17)0.0186 (14)0.0259 (17)0.0070 (12)0.0108 (14)0.0012 (12)
C110.0201 (16)0.0152 (13)0.0263 (17)0.0044 (11)0.0097 (14)0.0005 (12)
C120.036 (2)0.0208 (15)0.0283 (18)0.0104 (14)0.0104 (16)0.0008 (13)
C130.041 (2)0.0276 (17)0.0323 (19)0.0176 (15)0.0115 (17)0.0066 (15)
C140.0322 (19)0.0170 (15)0.050 (2)0.0090 (13)0.0184 (18)0.0012 (15)
Geometric parameters (Å, º) top
Ru1—C162.144 (3)S2—C91.711 (4)
Ru1—C202.147 (3)S2—C61.717 (3)
Ru1—C192.181 (3)N1—C11.313 (4)
Ru1—C152.181 (3)N1—C21.468 (4)
Ru1—C172.183 (3)N1—C101.475 (4)
Ru1—C182.213 (3)N2—C11.312 (4)
Ru1—Cl32.4185 (13)N2—C51.466 (4)
Ru1—Cl12.4243 (11)N2—C41.469 (4)
Ru1—Cl22.4377 (9)C1—H10.9600
C15—C161.406 (4)C2—C31.510 (5)
C15—C201.444 (4)C2—H2A0.9600
C15—C211.505 (4)C2—H2B0.9600
C16—C171.423 (5)C3—C41.514 (5)
C16—H160.9600C3—H3A0.9600
C17—C181.418 (5)C3—H3B0.9600
C17—H170.9600C4—H4A0.9600
C18—C191.427 (5)C4—H4B0.9600
C18—C241.496 (5)C5—C61.513 (4)
C19—C201.404 (5)C5—H5A0.9600
C19—H190.9600C5—H5B0.9600
C20—H200.9600C6—C71.370 (4)
C21—C221.523 (5)C7—C81.427 (5)
C21—C231.537 (5)C7—H70.9600
C21—H210.9600C8—C91.345 (6)
C22—H22A0.9599C8—H80.9600
C22—H22B0.9599C9—H90.9600
C22—H22C0.9599C10—C111.500 (4)
C23—H23A0.9599C10—H10A0.9600
C23—H23B0.9599C10—H10B0.9600
C23—H23C0.9599C11—C121.362 (5)
C24—H24A0.9599C12—C131.425 (4)
C24—H24B0.9599C12—H120.9600
C24—H24C0.9599C13—C141.347 (5)
S1—C141.718 (4)C13—H130.9600
S1—C111.721 (3)C14—H140.9600
C16—Ru1—C2068.78 (12)C21—C22—H22C109.5
C16—Ru1—C1981.44 (12)H22A—C22—H22C109.5
C20—Ru1—C1937.86 (12)H22B—C22—H22C109.5
C16—Ru1—C1537.94 (12)C21—C23—H23A109.5
C20—Ru1—C1538.96 (11)C21—C23—H23B109.5
C19—Ru1—C1569.75 (12)H23A—C23—H23B109.5
C16—Ru1—C1738.37 (12)C21—C23—H23C109.5
C20—Ru1—C1781.12 (13)H23A—C23—H23C109.5
C19—Ru1—C1768.43 (13)H23B—C23—H23C109.5
C15—Ru1—C1769.25 (12)C18—C24—H24A109.5
C16—Ru1—C1868.65 (12)C18—C24—H24B109.5
C20—Ru1—C1868.32 (13)H24A—C24—H24B109.5
C19—Ru1—C1837.89 (13)C18—C24—H24C109.5
C15—Ru1—C1881.99 (12)H24A—C24—H24C109.5
C17—Ru1—C1837.63 (12)H24B—C24—H24C109.5
C16—Ru1—Cl3127.04 (9)C14—S1—C1192.00 (16)
C20—Ru1—Cl386.08 (10)C9—S2—C691.74 (18)
C19—Ru1—Cl3106.63 (10)C1—N1—C2121.5 (3)
C15—Ru1—Cl394.62 (9)C1—N1—C10120.4 (3)
C17—Ru1—Cl3163.87 (9)C2—N1—C10118.1 (2)
C18—Ru1—Cl3143.21 (10)C1—N2—C5119.5 (3)
C16—Ru1—Cl187.76 (9)C1—N2—C4120.9 (3)
C20—Ru1—Cl1142.92 (9)C5—N2—C4118.8 (3)
C19—Ru1—Cl1166.75 (9)N2—C1—N1124.0 (3)
C15—Ru1—Cl1105.94 (9)N2—C1—H1118.0
C17—Ru1—Cl198.33 (10)N1—C1—H1118.0
C18—Ru1—Cl1130.29 (10)N1—C2—C3110.0 (3)
Cl3—Ru1—Cl186.00 (5)N1—C2—H2A109.7
C16—Ru1—Cl2143.80 (9)C3—C2—H2A109.7
C20—Ru1—Cl2128.81 (8)N1—C2—H2B109.7
C19—Ru1—Cl297.12 (9)C3—C2—H2B109.7
C15—Ru1—Cl2166.84 (9)H2A—C2—H2B108.2
C17—Ru1—Cl2107.40 (9)C2—C3—C4110.3 (3)
C18—Ru1—Cl288.00 (9)C2—C3—H3A109.6
Cl3—Ru1—Cl288.26 (4)C4—C3—H3A109.6
Cl1—Ru1—Cl287.05 (3)C2—C3—H3B109.6
C16—C15—C20116.5 (3)C4—C3—H3B109.6
C16—C15—C21123.8 (3)H3A—C3—H3B108.1
C20—C15—C21119.6 (3)N2—C4—C3109.6 (3)
C16—C15—Ru169.62 (17)N2—C4—H4A109.8
C20—C15—Ru169.26 (17)C3—C4—H4A109.8
C21—C15—Ru1130.4 (2)N2—C4—H4B109.8
C15—C16—C17122.4 (3)C3—C4—H4B109.8
C15—C16—Ru172.44 (17)H4A—C4—H4B108.2
C17—C16—Ru172.29 (17)N2—C5—C6111.7 (3)
C15—C16—H16118.8N2—C5—H5A109.3
C17—C16—H16118.8C6—C5—H5A109.3
Ru1—C16—H16129.0N2—C5—H5B109.3
C18—C17—C16119.8 (3)C6—C5—H5B109.3
C18—C17—Ru172.33 (18)H5A—C5—H5B107.9
C16—C17—Ru169.34 (17)C7—C6—C5128.1 (3)
C18—C17—H17120.1C7—C6—S2111.5 (2)
C16—C17—H17120.1C5—C6—S2120.1 (2)
Ru1—C17—H17130.9C6—C7—C8111.7 (3)
C17—C18—C19119.2 (3)C6—C7—H7124.1
C17—C18—C24121.1 (3)C8—C7—H7124.1
C19—C18—C24119.7 (3)C9—C8—C7113.0 (3)
C17—C18—Ru170.04 (19)C9—C8—H8123.5
C19—C18—Ru169.82 (18)C7—C8—H8123.5
C24—C18—Ru1130.8 (2)C8—C9—S2112.0 (3)
C20—C19—C18119.8 (3)C8—C9—H9124.0
C20—C19—Ru169.78 (18)S2—C9—H9124.0
C18—C19—Ru172.29 (19)N1—C10—C11112.0 (2)
C20—C19—H19120.1N1—C10—H10A109.2
C18—C19—H19120.1C11—C10—H10A109.2
Ru1—C19—H19130.4N1—C10—H10B109.2
C19—C20—C15122.2 (3)C11—C10—H10B109.2
C19—C20—Ru172.36 (19)H10A—C10—H10B107.9
C15—C20—Ru171.78 (18)C12—C11—C10126.9 (3)
C19—C20—H20118.9C12—C11—S1111.0 (2)
C15—C20—H20118.9C10—C11—S1122.0 (2)
Ru1—C20—H20129.6C11—C12—C13112.5 (3)
C15—C21—C22113.6 (3)C11—C12—H12123.8
C15—C21—C23108.2 (3)C13—C12—H12123.8
C22—C21—C23110.5 (3)C14—C13—C12113.1 (3)
C15—C21—H21108.1C14—C13—H13123.5
C22—C21—H21108.1C12—C13—H13123.5
C23—C21—H21108.1C13—C14—S1111.4 (2)
C21—C22—H22A109.5C13—C14—H14124.3
C21—C22—H22B109.5S1—C14—H14124.3
H22A—C22—H22B109.5
C20—Ru1—C15—C16130.5 (3)Cl3—Ru1—C18—C2492.4 (4)
C19—Ru1—C15—C16102.4 (2)Cl1—Ru1—C18—C2476.4 (4)
C17—Ru1—C15—C1628.64 (19)Cl2—Ru1—C18—C248.0 (3)
C18—Ru1—C15—C1665.3 (2)C17—C18—C19—C201.5 (5)
Cl3—Ru1—C15—C16151.54 (17)C24—C18—C19—C20179.4 (3)
Cl1—Ru1—C15—C1664.39 (19)Ru1—C18—C19—C2053.1 (3)
Cl2—Ru1—C15—C16106.2 (4)C17—C18—C19—Ru151.5 (3)
C16—Ru1—C15—C20130.5 (3)C24—C18—C19—Ru1126.3 (3)
C19—Ru1—C15—C2028.11 (19)C16—Ru1—C19—C2066.25 (19)
C17—Ru1—C15—C20101.9 (2)C15—Ru1—C19—C2028.86 (18)
C18—Ru1—C15—C2065.2 (2)C17—Ru1—C19—C20103.8 (2)
Cl3—Ru1—C15—C2077.93 (18)C18—Ru1—C19—C20132.3 (3)
Cl1—Ru1—C15—C20165.08 (16)Cl3—Ru1—C19—C2059.96 (18)
Cl2—Ru1—C15—C2024.3 (5)Cl1—Ru1—C19—C20102.0 (4)
C16—Ru1—C15—C21117.6 (4)Cl2—Ru1—C19—C20150.28 (17)
C20—Ru1—C15—C21111.8 (4)C16—Ru1—C19—C1866.05 (19)
C19—Ru1—C15—C21139.9 (3)C20—Ru1—C19—C18132.3 (3)
C17—Ru1—C15—C21146.3 (3)C15—Ru1—C19—C18103.44 (19)
C18—Ru1—C15—C21177.0 (3)C17—Ru1—C19—C1828.52 (18)
Cl3—Ru1—C15—C2133.9 (3)Cl3—Ru1—C19—C18167.74 (15)
Cl1—Ru1—C15—C2153.3 (3)Cl1—Ru1—C19—C1830.3 (5)
Cl2—Ru1—C15—C21136.2 (3)Cl2—Ru1—C19—C1877.42 (17)
C20—C15—C16—C172.0 (4)C18—C19—C20—C150.3 (5)
C21—C15—C16—C17179.7 (3)Ru1—C19—C20—C1554.0 (3)
Ru1—C15—C16—C1754.6 (3)C18—C19—C20—Ru154.3 (3)
C20—C15—C16—Ru152.6 (2)C16—C15—C20—C191.4 (4)
C21—C15—C16—Ru1125.7 (3)C21—C15—C20—C19179.8 (3)
C20—Ru1—C16—C1530.84 (19)Ru1—C15—C20—C1954.2 (3)
C19—Ru1—C16—C1567.9 (2)C16—C15—C20—Ru152.8 (2)
C17—Ru1—C16—C15133.8 (3)C21—C15—C20—Ru1125.6 (3)
C18—Ru1—C16—C15105.0 (2)C16—Ru1—C20—C19103.8 (2)
Cl3—Ru1—C16—C1536.5 (2)C15—Ru1—C20—C19133.9 (3)
Cl1—Ru1—C16—C15119.80 (18)C17—Ru1—C20—C1966.1 (2)
Cl2—Ru1—C16—C15158.27 (15)C18—Ru1—C20—C1929.26 (18)
C20—Ru1—C16—C17102.9 (2)Cl3—Ru1—C20—C19123.75 (18)
C19—Ru1—C16—C1765.9 (2)Cl1—Ru1—C20—C19158.17 (15)
C15—Ru1—C16—C17133.8 (3)Cl2—Ru1—C20—C1939.2 (2)
C18—Ru1—C16—C1728.82 (19)C16—Ru1—C20—C1530.09 (18)
Cl3—Ru1—C16—C17170.29 (15)C19—Ru1—C20—C15133.9 (3)
Cl1—Ru1—C16—C17106.42 (19)C17—Ru1—C20—C1567.84 (19)
Cl2—Ru1—C16—C1724.5 (3)C18—Ru1—C20—C15104.7 (2)
C15—C16—C17—C180.8 (5)Cl3—Ru1—C20—C15102.32 (18)
Ru1—C16—C17—C1853.8 (3)Cl1—Ru1—C20—C1524.2 (3)
C15—C16—C17—Ru154.7 (3)Cl2—Ru1—C20—C15173.08 (14)
C16—Ru1—C17—C18132.7 (3)C16—C15—C21—C2219.9 (5)
C20—Ru1—C17—C1865.8 (2)C20—C15—C21—C22158.3 (3)
C19—Ru1—C17—C1828.70 (19)Ru1—C15—C21—C2271.2 (4)
C15—Ru1—C17—C18104.3 (2)C16—C15—C21—C23103.1 (4)
Cl3—Ru1—C17—C18103.7 (3)C20—C15—C21—C2378.7 (4)
Cl1—Ru1—C17—C18151.71 (18)Ru1—C15—C21—C23165.7 (3)
Cl2—Ru1—C17—C1862.2 (2)C5—N2—C1—N1171.2 (3)
C20—Ru1—C17—C1666.9 (2)C4—N2—C1—N11.2 (4)
C19—Ru1—C17—C16104.0 (2)C2—N1—C1—N23.4 (4)
C15—Ru1—C17—C1628.34 (18)C10—N1—C1—N2177.8 (3)
C18—Ru1—C17—C16132.7 (3)C1—N1—C2—C323.7 (4)
Cl3—Ru1—C17—C1629.0 (4)C10—N1—C2—C3155.2 (3)
Cl1—Ru1—C17—C1675.62 (18)N1—C2—C3—C450.8 (4)
Cl2—Ru1—C17—C16165.13 (16)C1—N2—C4—C327.5 (4)
C16—C17—C18—C191.0 (5)C5—N2—C4—C3142.6 (3)
Ru1—C17—C18—C1951.4 (3)C2—C3—C4—N252.6 (3)
C16—C17—C18—C24178.8 (3)C1—N2—C5—C697.4 (3)
Ru1—C17—C18—C24126.4 (3)C4—N2—C5—C672.8 (3)
C16—C17—C18—Ru152.5 (3)N2—C5—C6—C7140.6 (3)
C16—Ru1—C18—C1729.34 (19)N2—C5—C6—S245.6 (4)
C20—Ru1—C18—C17104.1 (2)C9—S2—C6—C70.7 (3)
C19—Ru1—C18—C17133.3 (3)C9—S2—C6—C5174.1 (3)
C15—Ru1—C18—C1766.2 (2)C5—C6—C7—C8173.4 (3)
Cl3—Ru1—C18—C17153.21 (16)S2—C6—C7—C80.9 (4)
Cl1—Ru1—C18—C1737.9 (2)C6—C7—C8—C90.6 (5)
Cl2—Ru1—C18—C17122.37 (19)C7—C8—C9—S20.1 (4)
C16—Ru1—C18—C19104.0 (2)C6—S2—C9—C80.4 (3)
C20—Ru1—C18—C1929.24 (17)C1—N1—C10—C11111.5 (3)
C15—Ru1—C18—C1967.14 (18)C2—N1—C10—C1169.6 (4)
C17—Ru1—C18—C19133.3 (3)N1—C10—C11—C1295.8 (4)
Cl3—Ru1—C18—C1919.9 (2)N1—C10—C11—S185.4 (3)
Cl1—Ru1—C18—C19171.28 (14)C14—S1—C11—C120.0 (3)
Cl2—Ru1—C18—C19104.29 (17)C14—S1—C11—C10179.0 (3)
C16—Ru1—C18—C24143.7 (4)C10—C11—C12—C13179.3 (3)
C20—Ru1—C18—C24141.5 (4)S1—C11—C12—C130.3 (4)
C19—Ru1—C18—C24112.3 (4)C11—C12—C13—C140.6 (5)
C15—Ru1—C18—C24179.4 (4)C12—C13—C14—S10.6 (4)
C17—Ru1—C18—C24114.4 (4)C11—S1—C14—C130.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl1i0.962.643.519 (4)153
C1—H1···Cl2i0.962.823.478 (4)126
C10—H10A···Cl3i0.962.753.654 (4)156
C14—H14···Cl1ii0.962.633.584 (4)175
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula(C14H17N2S2)[Ru(C10H14)Cl3]
Mr619.05
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)9.989 (2), 11.404 (2), 12.922 (3)
α, β, γ (°)82.10 (3), 67.61 (3), 72.59 (3)
V3)1298.2 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.24 × 0.12 × 0.07
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.780, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
9185, 4606, 4048
Rint0.020
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.076, 1.12
No. of reflections4606
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.58

Computer programs: CrystalClear (Rigaku/MSC, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl1i0.962.643.519 (4)153
C1—H1···Cl2i0.962.823.478 (4)126
C10—H10A···Cl3i0.962.753.654 (4)156
C14—H14···Cl1ii0.962.633.584 (4)175
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

We thank the Technological and Scientific Research Council of Turkey TÜBİTAK-CNRS [TBAG-U/181 (106 T716)] and İnönü University Research Fund (B.A.P.: 2008-Güdümlü3) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArduengo, A. J. & Krafczyc, R. (1998). Chem. Ztg, 32, 6–14.  CAS Google Scholar
First citationArslan, H., VanDerveer, D., Özdemir, I., Çetinkaya, B. & Demir, S. (2004b). Z. Kristallogr. New Cryst. Struct. 219, 377–378.  CAS Google Scholar
First citationArslan, H., VanDerveer, D., Özdemir, I., Çetinkaya, B. & Demir, S. (2005a). J. Chem. Crystallogr. 35, 491–495.  Web of Science CSD CrossRef CAS Google Scholar
First citationArslan, H., Vanderveer, D., Özdemir, I., Çetinkaya, B. & Yaşar, S. (2004a). Z. Kristallogr. New Cryst. Struct. 219, 44–46.  CAS Google Scholar
First citationArslan, H., VanDerveer, D., Özdemir, İ., Demir, S. & Çetinkaya, B. (2007a). Acta Cryst. E63, m770–m771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArslan, H., VanDerveer, D., Özdemir, I., Yaşar, S. & Çetinkaya, B. (2005b). Acta Cryst. E61, m1873–m1875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArslan, H., VanDerveer, D., Yaşar, S., Özdemir, I. & Çetinkaya, B. (2007b). Acta Cryst. E63, m942–m944.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2007c). Acta Cryst. E63, m1001–m1003.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHerrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290–1309.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2371–2374.  CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationLittke, A. F. & Fu, G. C. (2002). Angew. Chem. Int. Ed. 41, 4176–4211.  CrossRef CAS Google Scholar
First citationLiu, L., Zhang, Q.-F. & Leung, W.-H. (2004). Acta Cryst. E60, m506–m508.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNavarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem. 71, 685–692.  Web of Science CrossRef PubMed CAS Google Scholar
First citationÖzdemir, İ., Demir, S. & Çetinkaya, B. (2005c). Tetrahedron, 61, 9791–9798.  Google Scholar
First citationÖzdemir, İ., Demir, S., Çetinkaya, B. & Çetinkaya, E. (2005b). J. Organomet. Chem. 690, 5849–5855.  Google Scholar
First citationÖzdemir, İ., Demir, S., Çetinkaya, B., Toupet, L., Castarlanes, R., Fischmeister, C. & Dixneuf, P. H. (2007). Eur. J. Inorg. Chem. 18, 2862–2869.  Google Scholar
First citationÖzdemir, İ., Gürbüz, N., Gök, Y. & Çetinkaya, B. (2008). Heteroat. Chem. 19, 82–86.  Google Scholar
First citationÖzdemir, İ., Yaşar, S. & Çetinkaya, B. (2005a). Transition Met. Chem. 30, 831–835.  Web of Science CrossRef Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTherrien, B., Frein, S. & Süss-Fink, G. (2004). Acta Cryst. E60, m1666–m1668.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. L. & Bruneau, L. (2008). Eur. J. Org. Chem. 12, 2142–2149.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m111-m112
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds