metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m15-m16

Bis(μ-N,N′-di-3-pyridylpyridine-2,6-dicarboxamide)bis­­[di­chloridomercury(II)] N,N-di­methyl­formamide disolvate

aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: wujie@zzu.edu.cn

(Received 17 September 2008; accepted 30 November 2008; online 6 December 2008)

The asymmetric unit of the binuclear title complex, [Hg2Cl4(C17H13N5O2)2]·2C3H7NO, contains one-half of the centrosymmetric mol­ecule and one dimethyl­formamide solvent mol­ecule. The HgII atom is four-coordinated by two N atoms from two ligands and two Cl atoms in a distorted tetra­hedral coordination geometry. Intra­molecular N—H⋯O hydrogen bonds may be effective in the stabilization of the structure. In the crystal structure, ππ contacts between pyridine rings [centroid-to-centroid distances 3.629 (3) and 3.595 (3) Å] may further stabilize the structure.

Related literature

For general background, see: Ockwig et al. (2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]); Qin et al. (2003[Qin, Z.-Q., Jennings, M. C. & Puddephatt, R. J. (2003). Inorg. Chem. 42, 1956-1965.]); Baer et al. (2002[Baer, A. J., Koivisto, B. D., Taylor, N. J., Hanan, G. S., Nierengarten, H. & Dorsselaer, A. V. (2002). Inorg. Chem. 41, 4987-4989.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg2Cl4(C17H13N5O2)2]·2C3H7NO

  • Mr = 1327.82

  • Triclinic, [P \overline 1]

  • a = 7.4947 (15) Å

  • b = 12.262 (3) Å

  • c = 13.284 (3) Å

  • α = 79.79 (3)°

  • β = 73.74 (3)°

  • γ = 76.21 (3)°

  • V = 1130.2 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 7.08 mm−1

  • T = 294 (2) K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Rigaku Saturn 724 diffractometer

  • Absorption correction: numerical (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.332, Tmax = 0.379

  • 12347 measured reflections

  • 4422 independent reflections

  • 3995 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.054

  • S = 1.03

  • 4422 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Selected geometric parameters (Å, °)

Hg1—N5i 2.295 (3)
Hg1—N1 2.337 (3)
Hg1—Cl1 2.3994 (12)
Hg1—Cl2 2.4249 (14)
N5i—Hg1—N1 106.50 (11)
N5i—Hg1—Cl1 117.02 (8)
N1—Hg1—Cl1 108.03 (8)
N5i—Hg1—Cl2 103.20 (9)
N1—Hg1—Cl2 99.40 (8)
Cl1—Hg1—Cl2 120.60 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.86 2.32 3.090 (4) 149
N2—H2A⋯N3 0.86 2.27 2.692 (2) 110
N4—H4A⋯O3 0.86 2.06 2.870 (4) 156
N4—H4A⋯N3 0.86 2.33 2.714 (3) 107

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON.

Supporting information


Comment top

The expansion of the field of metal–organic frameworks (MOFs) of predetermined structure depends on the judicious choice of new linkers and nodes of appropriate coordination algorithms (Ockwig et al., 2005). Rigid polydentate N-donor ligands are typical linkers employed in such a work. N,N'-bis(pyridin-3-yl)-2,6-pyridinedicarboxamide, with a rigid conjugated clamp-like configuration, is a convenient bridging ligand for the syntheses of cyclic complexes (Qin et al., 2003; Baer et al., 2002). In this work, we selected this ligand as linker, to generate the new title coordination complex, and we report herein its crystal structure.

The asymmetric unit of the title compound (Fig. 1) contains one-half molecule and an N,N-dimethylformamide (DMF) molecule, where the bond lengths (Allen et al., 1987) and angles are within normal ranges. The HgII atom is four-coordinated by two N atoms from two ligands and two Cl atoms in a distorted tetrahedral coordination geometry (Table 1). The two HgII atoms are bridged with two N,N'-bis(pyridin-3-yl)-2,6-pyridinedicarboxamide ligands to form a porous MOF with 28-membered macroring. The pyridine rings A (N1/C1–C5), B (N3/C7–C11) and C (N5/C13–C17) are oriented at dihedral angles of A/B = 3.31 (3)°, A/C = 62.29 (3)° and B/C = 60.76 (3)°. The intramolecular N—H···O hydrogen bonds (Table 2, Fig. 1) may be effective in the stabilization of the structure.

In the crystal structure, the ππ contacts between the pyridine rings, Cg1—Cg2i and Cg3—Cg3ii [symmetry codes: (i) 2 - x, 1 - y, -z; (ii) -x, 2 - y, 1 - z, where Cg1, Cg2 and Cg3 are centroids of the rings A (N1/C1–C5), B (N3/C7–C11) and C (N5/C13–C17), respectively] may further stabilize the structure, with centroid–centroid distances of 3.629 (3) Å and 3.595 (3) Å.

Related literature top

For general background, see: Ockwig et al. (2005); Qin et al. (2003); Baer et al. (2002). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, the ligand N,N'-bis-(pyridin-3-yl)-2,6-pyridinedicarboxamide (0.016 g, 0.05 mmol) in DMF (5 ml) was added dropwise to a solution of HgCl2 (0.028 g, 0.1 mmol) in methanol (5 ml). The precipitate was filtered and the resulting solution was allowed to stand at room temperature in the dark. After one week high quality colorless crystals were obtained and dried in air.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.
Bis(µ-N,N'-di-3-pyridylpyridine-2,6- dicarboxamide)bis[dichloridomercury(II)] N,N-dimethylformamide disolvate top
Crystal data top
[Hg2Cl4(C17H13N5O2)2]·2C3H7NOZ = 1
Mr = 1327.82F(000) = 640
Triclinic, P1Dx = 1.951 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4947 (15) ÅCell parameters from 3289 reflections
b = 12.262 (3) Åθ = 2.9–26.0°
c = 13.284 (3) ŵ = 7.08 mm1
α = 79.79 (3)°T = 294 K
β = 73.74 (3)°Prism, colourless
γ = 76.21 (3)°0.20 × 0.18 × 0.17 mm
V = 1130.2 (5) Å3
Data collection top
Rigaku Saturn 724
diffractometer
4422 independent reflections
Radiation source: fine-focus sealed tube3995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 28.5714 pixels mm-1θmax = 26.0°, θmin = 2.9°
dtprofit.ref scansh = 99
Absorption correction: numerical
(CrystalClear; Rigaku/MSC, 2006)
k = 1515
Tmin = 0.332, Tmax = 0.379l = 1616
12347 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0195P)2 + 0.7349P]
where P = (Fo2 + 2Fc2)/3
4422 reflections(Δ/σ)max = 0.002
291 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Hg2Cl4(C17H13N5O2)2]·2C3H7NOγ = 76.21 (3)°
Mr = 1327.82V = 1130.2 (5) Å3
Triclinic, P1Z = 1
a = 7.4947 (15) ÅMo Kα radiation
b = 12.262 (3) ŵ = 7.08 mm1
c = 13.284 (3) ÅT = 294 K
α = 79.79 (3)°0.20 × 0.18 × 0.17 mm
β = 73.74 (3)°
Data collection top
Rigaku Saturn 724
diffractometer
4422 independent reflections
Absorption correction: numerical
(CrystalClear; Rigaku/MSC, 2006)
3995 reflections with I > 2σ(I)
Tmin = 0.332, Tmax = 0.379Rint = 0.030
12347 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.03Δρmax = 0.65 e Å3
4422 reflectionsΔρmin = 0.83 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.47943 (3)0.144664 (13)0.675659 (12)0.04821 (7)
Cl10.39934 (16)0.03890 (9)0.72493 (9)0.0566 (3)
Cl20.26095 (18)0.30392 (9)0.61184 (9)0.0611 (3)
O10.2543 (5)0.4774 (3)1.1235 (2)0.0738 (10)
O20.1219 (4)0.9357 (2)0.7985 (2)0.0511 (7)
O30.3641 (4)0.5771 (2)0.7182 (2)0.0546 (8)
N10.4906 (4)0.2103 (2)0.8281 (2)0.0358 (7)
N20.2824 (4)0.4689 (2)0.9507 (2)0.0337 (7)
H2A0.25840.50870.89410.040*
N30.1061 (4)0.6871 (2)0.9285 (2)0.0316 (7)
N40.0775 (4)0.7801 (2)0.7310 (2)0.0352 (7)
H4A0.14520.71510.74590.042*
N50.2361 (4)0.8435 (2)0.4443 (2)0.0387 (7)
N60.6833 (5)0.5377 (3)0.6475 (2)0.0417 (8)
C10.5503 (5)0.1381 (3)0.9066 (3)0.0387 (9)
H70.61180.06450.89440.046*
C20.5222 (5)0.1712 (3)1.0037 (3)0.0401 (9)
H80.56340.11981.05690.048*
C30.4326 (5)0.2808 (3)1.0236 (3)0.0388 (9)
H90.41240.30361.08970.047*
C40.3738 (5)0.3557 (3)0.9418 (3)0.0313 (8)
C50.4047 (5)0.3161 (3)0.8456 (3)0.0323 (8)
H110.36390.36540.79110.039*
C60.2281 (5)0.5222 (3)1.0382 (3)0.0385 (9)
C70.1299 (5)0.6438 (3)1.0247 (3)0.0315 (8)
C80.0694 (5)0.7050 (3)1.1103 (3)0.0419 (9)
H140.08860.67151.17590.050*
C90.0202 (5)0.8169 (3)1.0963 (3)0.0432 (9)
H150.06010.86071.15190.052*
C100.0493 (5)0.8622 (3)0.9980 (3)0.0384 (9)
H160.11210.93670.98670.046*
C110.0159 (5)0.7954 (3)0.9168 (3)0.0323 (8)
C120.0168 (5)0.8443 (3)0.8101 (3)0.0346 (8)
C130.0691 (5)0.8157 (3)0.6251 (3)0.0324 (8)
C140.1022 (5)0.8551 (3)0.5975 (3)0.0397 (9)
H200.21650.86040.64880.048*
C150.0995 (6)0.8861 (3)0.4925 (3)0.0437 (10)
H210.21270.91150.47200.052*
C160.0711 (6)0.8796 (3)0.4179 (3)0.0424 (10)
H220.07130.90100.34710.051*
C170.2348 (5)0.8112 (3)0.5462 (3)0.0341 (8)
H230.35000.78470.56450.041*
C180.8658 (6)0.5671 (4)0.6339 (4)0.0574 (12)
H24A0.91040.59820.56200.086*
H24B0.95520.50050.65040.086*
H24C0.85260.62200.68020.086*
C190.6793 (7)0.4444 (4)0.5953 (4)0.0645 (13)
H25A0.55250.43080.61370.097*
H25B0.76300.37780.61740.097*
H25C0.71960.46290.52020.097*
C200.5254 (6)0.5959 (3)0.7025 (3)0.0470 (10)
H260.53630.65650.73220.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.06800 (12)0.04056 (10)0.03301 (9)0.01143 (8)0.00684 (7)0.00492 (7)
Cl10.0584 (7)0.0423 (6)0.0694 (7)0.0179 (5)0.0136 (6)0.0004 (5)
Cl20.0773 (8)0.0504 (6)0.0618 (7)0.0063 (6)0.0364 (6)0.0009 (5)
O10.125 (3)0.0519 (19)0.0363 (17)0.0185 (19)0.0330 (18)0.0114 (14)
O20.0582 (18)0.0368 (15)0.0444 (16)0.0123 (14)0.0092 (14)0.0039 (13)
O30.0463 (18)0.0508 (18)0.0482 (17)0.0070 (14)0.0008 (14)0.0013 (14)
N10.0415 (18)0.0313 (16)0.0329 (16)0.0063 (14)0.0069 (14)0.0047 (13)
N20.0470 (18)0.0270 (15)0.0231 (15)0.0000 (13)0.0109 (13)0.0006 (12)
N30.0299 (15)0.0311 (16)0.0310 (16)0.0052 (13)0.0035 (13)0.0043 (13)
N40.0411 (18)0.0278 (15)0.0287 (16)0.0016 (13)0.0053 (13)0.0002 (13)
N50.050 (2)0.0323 (16)0.0319 (17)0.0067 (15)0.0090 (15)0.0024 (14)
N60.050 (2)0.0349 (17)0.0342 (17)0.0052 (15)0.0043 (15)0.0021 (14)
C10.039 (2)0.0321 (19)0.040 (2)0.0018 (16)0.0055 (17)0.0050 (17)
C20.044 (2)0.036 (2)0.037 (2)0.0031 (17)0.0159 (18)0.0055 (17)
C30.050 (2)0.036 (2)0.031 (2)0.0041 (18)0.0150 (18)0.0041 (16)
C40.0338 (19)0.0305 (18)0.0276 (18)0.0051 (15)0.0075 (15)0.0006 (15)
C50.042 (2)0.0294 (18)0.0243 (18)0.0056 (16)0.0101 (15)0.0007 (15)
C60.044 (2)0.041 (2)0.029 (2)0.0039 (18)0.0095 (17)0.0072 (17)
C70.0316 (19)0.0341 (19)0.0273 (18)0.0065 (15)0.0045 (15)0.0045 (15)
C80.045 (2)0.051 (2)0.029 (2)0.0106 (19)0.0050 (17)0.0096 (18)
C90.048 (2)0.044 (2)0.037 (2)0.0104 (19)0.0008 (18)0.0206 (18)
C100.037 (2)0.034 (2)0.043 (2)0.0042 (16)0.0050 (17)0.0120 (17)
C110.0293 (18)0.0325 (19)0.0319 (19)0.0071 (15)0.0004 (15)0.0063 (16)
C120.033 (2)0.032 (2)0.035 (2)0.0030 (16)0.0058 (16)0.0025 (16)
C130.039 (2)0.0212 (17)0.035 (2)0.0014 (15)0.0110 (16)0.0010 (15)
C140.039 (2)0.0318 (19)0.048 (2)0.0065 (17)0.0102 (18)0.0053 (17)
C150.051 (2)0.0291 (19)0.059 (3)0.0043 (18)0.030 (2)0.0036 (19)
C160.064 (3)0.029 (2)0.040 (2)0.0092 (19)0.024 (2)0.0007 (17)
C170.039 (2)0.0298 (18)0.0311 (19)0.0017 (16)0.0099 (16)0.0016 (15)
C180.058 (3)0.059 (3)0.054 (3)0.019 (2)0.013 (2)0.005 (2)
C190.058 (3)0.053 (3)0.074 (3)0.016 (2)0.010 (2)0.024 (2)
C200.064 (3)0.036 (2)0.033 (2)0.003 (2)0.012 (2)0.0016 (17)
Geometric parameters (Å, º) top
Hg1—N5i2.295 (3)C3—H90.9300
Hg1—N12.337 (3)C4—C51.387 (5)
Hg1—Cl12.3994 (12)C5—H110.9300
Hg1—Cl22.4249 (14)C6—C71.501 (5)
O1—C61.215 (4)C7—C81.383 (5)
O2—C121.219 (4)C8—C91.381 (5)
O3—C201.238 (5)C8—H140.9300
N1—C51.333 (4)C9—C101.381 (5)
N1—C11.348 (5)C9—H150.9300
N2—C61.349 (4)C10—C111.378 (5)
N2—C41.404 (4)C10—H160.9300
N2—H2A0.8600C11—C121.501 (5)
N3—C71.338 (4)C13—C171.379 (5)
N3—C111.343 (4)C13—C141.386 (5)
N4—C121.354 (4)C14—C151.374 (5)
N4—C131.412 (4)C14—H200.9300
N4—H4A0.8600C15—C161.377 (6)
N5—C161.332 (5)C15—H210.9300
N5—C171.340 (4)C16—H220.9300
N5—Hg1i2.295 (3)C17—H230.9300
N6—C201.320 (5)C18—H24A0.9600
N6—C191.449 (5)C18—H24B0.9600
N6—C181.451 (5)C18—H24C0.9600
C1—C21.365 (5)C19—H25A0.9600
C1—H70.9300C19—H25B0.9600
C2—C31.387 (5)C19—H25C0.9600
C2—H80.9300C20—H260.9300
C3—C41.392 (5)
N5i—Hg1—N1106.50 (11)C9—C8—H14120.7
N5i—Hg1—Cl1117.02 (8)C7—C8—H14120.7
N1—Hg1—Cl1108.03 (8)C10—C9—C8118.6 (4)
N5i—Hg1—Cl2103.20 (9)C10—C9—H15120.7
N1—Hg1—Cl299.40 (8)C8—C9—H15120.7
Cl1—Hg1—Cl2120.60 (4)C11—C10—C9119.1 (4)
C5—N1—C1119.2 (3)C11—C10—H16120.5
C5—N1—Hg1118.8 (2)C9—C10—H16120.5
C1—N1—Hg1120.8 (2)N3—C11—C10123.2 (3)
C6—N2—C4127.2 (3)N3—C11—C12117.7 (3)
C6—N2—H2A116.4C10—C11—C12119.1 (3)
C4—N2—H2A116.4O2—C12—N4124.1 (3)
C7—N3—C11117.0 (3)O2—C12—C11120.6 (3)
C12—N4—C13122.6 (3)N4—C12—C11115.3 (3)
C12—N4—H4A118.7C17—C13—C14118.5 (3)
C13—N4—H4A118.7C17—C13—N4119.7 (3)
C16—N5—C17118.8 (3)C14—C13—N4121.8 (3)
C16—N5—Hg1i122.1 (2)C15—C14—C13118.6 (4)
C17—N5—Hg1i118.7 (2)C15—C14—H20120.7
C20—N6—C19120.9 (4)C13—C14—H20120.7
C20—N6—C18121.5 (4)C14—C15—C16119.9 (4)
C19—N6—C18117.6 (3)C14—C15—H21120.1
N1—C1—C2121.1 (3)C16—C15—H21120.1
N1—C1—H7119.4N5—C16—C15121.8 (4)
C2—C1—H7119.4N5—C16—H22119.1
C1—C2—C3120.6 (3)C15—C16—H22119.1
C1—C2—H8119.7N5—C17—C13122.5 (3)
C3—C2—H8119.7N5—C17—H23118.8
C2—C3—C4118.1 (3)C13—C17—H23118.8
C2—C3—H9120.9N6—C18—H24A109.5
C4—C3—H9120.9N6—C18—H24B109.5
C5—C4—C3118.3 (3)H24A—C18—H24B109.5
C5—C4—N2117.5 (3)N6—C18—H24C109.5
C3—C4—N2124.2 (3)H24A—C18—H24C109.5
N1—C5—C4122.6 (3)H24B—C18—H24C109.5
N1—C5—H11118.7N6—C19—H25A109.5
C4—C5—H11118.7N6—C19—H25B109.5
O1—C6—N2123.9 (4)H25A—C19—H25B109.5
O1—C6—C7120.5 (3)N6—C19—H25C109.5
N2—C6—C7115.5 (3)H25A—C19—H25C109.5
N3—C7—C8123.5 (3)H25B—C19—H25C109.5
N3—C7—C6117.1 (3)O3—C20—N6126.0 (4)
C8—C7—C6119.5 (3)O3—C20—H26117.0
C9—C8—C7118.7 (4)N6—C20—H26117.0
N5i—Hg1—N1—C599.7 (3)C6—C7—C8—C9179.8 (3)
Cl1—Hg1—N1—C5133.8 (2)C7—C8—C9—C101.4 (6)
Cl2—Hg1—N1—C57.2 (3)C8—C9—C10—C111.6 (6)
N5i—Hg1—N1—C192.7 (3)C7—N3—C11—C100.7 (5)
Cl1—Hg1—N1—C133.8 (3)C7—N3—C11—C12178.3 (3)
Cl2—Hg1—N1—C1160.5 (3)C9—C10—C11—N30.6 (6)
C5—N1—C1—C20.9 (6)C9—C10—C11—C12179.6 (3)
Hg1—N1—C1—C2166.7 (3)C13—N4—C12—O22.8 (6)
N1—C1—C2—C30.7 (6)C13—N4—C12—C11177.2 (3)
C1—C2—C3—C40.4 (6)N3—C11—C12—O2168.8 (3)
C2—C3—C4—C51.2 (5)C10—C11—C12—O210.3 (5)
C2—C3—C4—N2179.7 (3)N3—C11—C12—N411.2 (5)
C6—N2—C4—C5175.5 (4)C10—C11—C12—N4169.7 (3)
C6—N2—C4—C33.6 (6)C12—N4—C13—C17129.3 (4)
C1—N1—C5—C40.0 (5)C12—N4—C13—C1451.0 (5)
Hg1—N1—C5—C4167.8 (3)C17—C13—C14—C151.0 (5)
C3—C4—C5—N11.0 (5)N4—C13—C14—C15178.7 (3)
N2—C4—C5—N1179.8 (3)C13—C14—C15—C161.2 (5)
C4—N2—C6—O10.8 (7)C17—N5—C16—C151.1 (5)
C4—N2—C6—C7179.0 (3)Hg1i—N5—C16—C15171.3 (3)
C11—N3—C7—C80.9 (5)C14—C15—C16—N50.1 (6)
C11—N3—C7—C6179.1 (3)C16—N5—C17—C131.2 (5)
O1—C6—C7—N3179.9 (4)Hg1i—N5—C17—C13171.4 (3)
N2—C6—C7—N30.0 (5)C14—C13—C17—N50.1 (5)
O1—C6—C7—C80.1 (6)N4—C13—C17—N5179.9 (3)
N2—C6—C7—C8180.0 (3)C19—N6—C20—O32.2 (6)
N3—C7—C8—C90.1 (6)C18—N6—C20—O3179.9 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.862.323.090 (4)149
N2—H2A···N30.862.272.692 (2)110
N4—H4A···O30.862.062.870 (4)156
N4—H4A···N30.862.332.714 (3)107

Experimental details

Crystal data
Chemical formula[Hg2Cl4(C17H13N5O2)2]·2C3H7NO
Mr1327.82
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.4947 (15), 12.262 (3), 13.284 (3)
α, β, γ (°)79.79 (3), 73.74 (3), 76.21 (3)
V3)1130.2 (5)
Z1
Radiation typeMo Kα
µ (mm1)7.08
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerRigaku Saturn 724
diffractometer
Absorption correctionNumerical
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.332, 0.379
No. of measured, independent and
observed [I > 2σ(I)] reflections
12347, 4422, 3995
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.054, 1.03
No. of reflections4422
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.83

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Hg1—N5i2.295 (3)Hg1—Cl12.3994 (12)
Hg1—N12.337 (3)Hg1—Cl22.4249 (14)
N5i—Hg1—N1106.50 (11)N5i—Hg1—Cl2103.20 (9)
N5i—Hg1—Cl1117.02 (8)N1—Hg1—Cl299.40 (8)
N1—Hg1—Cl1108.03 (8)Cl1—Hg1—Cl2120.60 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.862.323.090 (4)149
N2—H2A···N30.862.272.692 (2)110
N4—H4A···O30.862.062.870 (4)156
N4—H4A···N30.862.332.714 (3)107
 

Acknowledgements

The authors thank Professor Hou Hong-Wei of Zhengzhou University for his help.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaer, A. J., Koivisto, B. D., Taylor, N. J., Hanan, G. S., Nierengarten, H. & Dorsselaer, A. V. (2002). Inorg. Chem. 41, 4987–4989.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQin, Z.-Q., Jennings, M. C. & Puddephatt, R. J. (2003). Inorg. Chem. 42, 1956–1965.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m15-m16
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds