organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Piperidinium bis­­(2-oxidobenzoato-κ2O1,O2)borate

aSchool of Chemistry & Environmental Science, Shaanxi University of Technology, Hanzhong, Shaanxi Province 723001, People's Republic of China, and bDepartment of Physics, Shaanxi University of Technology, Hanzhong, Shaanxi Province 723001, People's Republic of China
*Correspondence e-mail: tang7713@sina.com

(Received 6 October 2008; accepted 15 December 2008; online 20 December 2008)

The asymmetric unit of the title compound, C5H12N+·C14H8BO6 or [C5H12N][BO4(C7H4O)2], contains two piperidinium cations and two bis­(salicylato)borate anions. The coordination geometries around the B atoms are distorted tetra­hedral. In the two mol­ecules, the aromatic rings are oriented at dihedral angles of 76.27 (3) and 83.86 (3)°. The rings containing B atoms have twist-boat conformations, while the two cations adopt chair conformations. In the crystal, the component species are linked by N—H⋯O hydrogen bonds. In the crystal structure, intra- and inter­molecular N—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For general background, see: Barthel et al. (2000[Barthel, J., Schmid, A. & Gores, H. J. (2000). J. Electrochem. Soc. 147, 21-24.]); Downard et al. (2002[Downard, A., Nieuwenhuyzen, M., Seddon, K. R., Van den Berg, J. A., Schmidt, M. A., Vaughan, J. F. S. & Welz-Biermann, U. (2002). Cryst. Growth Des. 2, 111-119.]). For related structures, see: Han et al. (2007[Han, W.-H., Li, P. & Liu, Z.-H. (2007). Acta Cryst. E63, o3946.]); Li & Liu (2006[Li, P. & Liu, Z. H. (2006). Z. Kristallogr. New Cryst. Struct. 221, 179-180.]); Zhang et al. (2005[Zhang, J., Wang, J., Huang, X. Y. & Chen, J. T. (2005). Z. Kristallogr. New Cryst. Struct. 220, 261-262.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C5H12N+·C14H8BO6

  • Mr = 369.17

  • Monoclinic, C c

  • a = 19.835 (7) Å

  • b = 16.247 (7) Å

  • c = 12.231 (5) Å

  • β = 111.624 (10)°

  • V = 3664 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.58 × 0.43 × 0.40 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.962

  • 9508 measured reflections

  • 3235 independent reflections

  • 1967 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.203

  • S = 1.04

  • 3235 reflections

  • 487 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected bond lengths (Å)

B1—O1 1.515 (10)
B1—O3 1.429 (9)
B1—O4 1.485 (10)
B1—O6 1.422 (10)
B2—O7 1.477 (10)
B2—O9 1.439 (10)
B2—O10 1.505 (10)
B2—O12 1.421 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O8 0.90 1.95 2.828 (9) 163
N1—H1B⋯O2 0.90 1.93 2.829 (9) 174
N2—H2A⋯O5i 0.90 1.96 2.824 (10) 159
N2—H2B⋯O11 0.90 1.98 2.855 (9) 163
Symmetry code: (i) x, y, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

To date, alkali-metals bis(salicylato)borates have received the most attention (Zhang et al., 2005; Downard et al., 2002), since the lithium organoborates had been considered as the lithium battery electrolytes (Barthel et al., 2000). In contrast, studies of organic base bis(salicylato)- borates have been less extensive (Li & Liu, 2006; Han et al., 2007). We report herein the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound contains two [C5H12N]+ cations and two [BO4(C7H4O)2]- anions (Fig.1). In the anions, the sp3-hybridized B atoms are bonded to four oxygen atoms in distorted tetrahedral geometries (Table 1). Rings B (C2-C7), D (C9-C14) and F (C16-C21), H (C23-C28) are, of course, planar, and they are oriented at dihedral angles of B/D = 76.27 (3)° and D/F = 83.86 (3)°. Rings A (B1/O1/O3/C1-C3), C (B1/O4/O6/C8-C10) and E (B2/O7/O9/C15-C17), G (B2/O10/O12/C22-C24) are not planar, having total puckering amplitudes, QT, of 0.739 (2), 0.689 (3) Å and 0.724 (3), 0.859 (3) Å, respectively, twisted-boat conformations [ϕ = -52.97 (4)° and θ = 105.16 (5)°; ϕ = -51.39 (4)° and θ = 104.63 (3)°; ϕ = -56.94 (4)° and θ = 109.52 (5)°; ϕ = -55.15 (5)° and θ = 108.00 (5)°, respectively] (Cremer & Pople, 1975). Rings I (N1/C29-C33) and J (N2/C34-C38) adopt, of course, chair conformations, having total puckering amplitudes, QT, of 0.562 (3) and 0.562 (3) Å, respectively [ϕ = -69.55 (3)° and θ = 178.57 (4)°; ϕ = -132.85 (4)° and θ = 4.37 (4)°, respectively] (Cremer & Pople, 1975). The intramolecular N-H···O hydrogen bonds (Table 2 and Fig. 1) link the cations to the anions.

In the crystal structure, the intra- and intermolecular N-H···O hydrogen bonds (Table 2) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Barthel et al. (2000); Downard et al. (2002). For related structures, see: Han et al. (2007); Li & Liu (2006); Zhang et al. (2005). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

For the preparation of the title compound, a solution of boric acid (0.325 g) in distilled water (5 ml) was added to a stirred solution of salicylic acid (1.418 g) in an ethanol/water (1:1) solvent (10 ml). The reaction mixture was stirred at 353 K for 20 min, and then piperidinium (1 ml) was added slowly. After 4 h continued heating and stirring, the pH of the mixture had changed from 2 to 6, and the clear solution was then allowed to stand for 15 d at room temperature. The title compound was isolated as colorless transparent crystals. Elemental analysis calc.: C 61.80, N 3.79, H 5.47%; found: C 62.12, N 3.62, H 5.12%.

Refinement top

H atoms were positioned geometrically, with N-H = 0.90 Å (for NH2) and C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Piperidinium bis(2-oxidobenzoato-κ2O1,O2)borate top
Crystal data top
C5H12N+·C14H8BO6F(000) = 1552
Mr = 369.17Dx = 1.338 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1899 reflections
a = 19.835 (7) Åθ = 2.2–23.1°
b = 16.247 (7) ŵ = 0.10 mm1
c = 12.231 (5) ÅT = 298 K
β = 111.624 (10)°Clubbed, colorless
V = 3664 (3) Å30.58 × 0.43 × 0.40 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3235 independent reflections
Radiation source: fine-focus sealed tube1967 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2323
Tmin = 0.945, Tmax = 0.962k = 1916
9508 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.203 w = 1/[σ2(Fo2) + (0.1245P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3235 reflectionsΔρmax = 0.42 e Å3
487 parametersΔρmin = 0.23 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C5H12N+·C14H8BO6V = 3664 (3) Å3
Mr = 369.17Z = 8
Monoclinic, CcMo Kα radiation
a = 19.835 (7) ŵ = 0.10 mm1
b = 16.247 (7) ÅT = 298 K
c = 12.231 (5) Å0.58 × 0.43 × 0.40 mm
β = 111.624 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3235 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1967 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.962Rint = 0.053
9508 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064487 parameters
wR(F2) = 0.203H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
3235 reflectionsΔρmin = 0.23 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2375 (3)0.3316 (3)0.5857 (5)0.0459 (13)
O20.1339 (3)0.3910 (3)0.5637 (5)0.0572 (15)
O30.3536 (3)0.3847 (3)0.7220 (5)0.0458 (13)
O40.3144 (3)0.2518 (3)0.7485 (5)0.0461 (13)
O50.2966 (4)0.1240 (3)0.7940 (6)0.0635 (16)
O60.3499 (3)0.2835 (3)0.5839 (5)0.0490 (13)
O70.0436 (3)0.2515 (3)0.0932 (4)0.0481 (13)
O80.0554 (3)0.3784 (3)0.1602 (5)0.0583 (15)
O90.0048 (3)0.2223 (3)0.1159 (4)0.0498 (13)
O100.1147 (3)0.1677 (3)0.0174 (5)0.0461 (13)
O110.2152 (3)0.0991 (4)0.1091 (6)0.0630 (16)
O120.0013 (3)0.1207 (3)0.0170 (5)0.0455 (13)
N10.0823 (3)0.2848 (4)0.3669 (6)0.0476 (16)
H1A0.08340.31480.30570.057*
H1B0.10110.31570.43220.057*
N20.2593 (3)0.2086 (4)0.0346 (6)0.0494 (16)
H2A0.26110.17410.09120.059*
H2B0.23790.18160.00810.059*
B10.3161 (4)0.3137 (5)0.6602 (7)0.0375 (19)
B20.0379 (5)0.1900 (5)0.0013 (8)0.041 (2)
C10.2001 (4)0.3872 (4)0.6166 (7)0.0429 (18)
C20.2406 (4)0.4427 (4)0.7122 (6)0.0365 (16)
C30.3163 (4)0.4403 (4)0.7615 (6)0.0407 (17)
C40.3549 (4)0.4981 (5)0.8441 (7)0.049 (2)
H40.40530.49780.87310.059*
C50.3183 (5)0.5560 (5)0.8832 (8)0.060 (2)
H50.34390.59420.94000.072*
C60.2431 (5)0.5571 (5)0.8373 (8)0.062 (2)
H60.21830.59590.86420.074*
C70.2053 (5)0.5024 (5)0.7539 (8)0.055 (2)
H70.15490.50450.72380.066*
C80.3096 (4)0.1710 (4)0.7260 (7)0.0429 (18)
C90.3228 (4)0.1448 (5)0.6222 (7)0.0452 (18)
C100.3428 (4)0.2031 (4)0.5546 (7)0.0417 (17)
C110.3556 (5)0.1784 (6)0.4551 (8)0.058 (2)
H110.36930.21650.41030.069*
C120.3480 (5)0.0977 (6)0.4244 (9)0.070 (3)
H120.35590.08160.35720.085*
C130.3292 (6)0.0393 (6)0.4874 (10)0.079 (3)
H130.32430.01540.46340.095*
C140.3173 (5)0.0624 (5)0.5885 (9)0.064 (2)
H140.30560.02280.63360.077*
C150.0430 (4)0.3318 (4)0.0751 (7)0.0418 (17)
C160.0305 (4)0.3602 (5)0.0449 (7)0.0420 (17)
C170.0130 (4)0.3028 (5)0.1354 (6)0.0435 (18)
C180.0028 (4)0.3290 (6)0.2479 (7)0.058 (2)
H180.00730.29110.30880.070*
C190.0076 (5)0.4118 (6)0.2696 (9)0.074 (3)
H190.00020.42940.34550.089*
C200.0233 (6)0.4689 (6)0.1802 (9)0.078 (3)
H200.02560.52470.19550.094*
C210.0355 (5)0.4415 (5)0.0671 (9)0.061 (2)
H210.04720.47920.00560.074*
C220.1505 (4)0.1094 (4)0.0904 (7)0.0451 (19)
C230.1087 (4)0.0581 (4)0.1416 (6)0.0384 (17)
C240.0343 (4)0.0664 (4)0.1038 (6)0.0411 (18)
C250.0054 (5)0.0182 (5)0.1517 (8)0.053 (2)
H250.05540.02460.12780.064*
C260.0304 (6)0.0395 (5)0.2353 (8)0.067 (3)
H260.00410.07310.26650.080*
C270.1045 (5)0.0483 (5)0.2735 (9)0.067 (3)
H270.12760.08740.33060.080*
C280.1445 (5)0.0001 (5)0.2280 (7)0.054 (2)
H280.19460.00560.25430.065*
C290.0057 (5)0.2642 (5)0.3479 (8)0.057 (2)
H29A0.01620.23510.27390.069*
H29B0.02160.31440.34360.069*
C300.0024 (5)0.2116 (6)0.4465 (9)0.070 (3)
H30A0.04750.19620.43100.084*
H30B0.02010.24260.51930.084*
C310.0479 (6)0.1345 (6)0.4591 (10)0.078 (3)
H31A0.02710.10040.38960.094*
H31B0.04810.10300.52660.094*
C320.1256 (5)0.1579 (6)0.4749 (9)0.070 (3)
H32A0.14800.18660.54910.084*
H32B0.15330.10830.47760.084*
C330.1276 (5)0.2104 (6)0.3794 (8)0.060 (2)
H33A0.11030.17960.30630.073*
H33B0.17730.22670.39470.073*
C340.2141 (5)0.2807 (6)0.0911 (9)0.068 (3)
H34A0.16470.26300.13380.082*
H34B0.23250.30530.14680.082*
C350.2150 (5)0.3438 (6)0.0000 (10)0.073 (3)
H35A0.18960.32190.04780.087*
H35B0.18940.39270.03940.087*
C360.2913 (7)0.3672 (7)0.0786 (12)0.090 (4)
H36A0.31550.39440.03260.109*
H36B0.28970.40500.13890.109*
C370.3326 (6)0.2910 (6)0.1350 (10)0.082 (3)
H37A0.30980.26580.18450.098*
H37B0.38180.30590.18430.098*
C380.3344 (5)0.2300 (6)0.0428 (9)0.068 (3)
H38A0.35990.25380.00380.082*
H38B0.36010.18070.08060.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.050 (3)0.037 (3)0.044 (3)0.001 (2)0.008 (2)0.007 (2)
O20.044 (3)0.059 (3)0.055 (4)0.005 (2)0.002 (3)0.013 (3)
O30.042 (3)0.033 (3)0.059 (4)0.004 (2)0.015 (3)0.008 (2)
O40.060 (3)0.042 (3)0.038 (3)0.006 (2)0.021 (3)0.005 (2)
O50.092 (4)0.048 (3)0.061 (4)0.006 (3)0.042 (3)0.008 (3)
O60.065 (3)0.036 (3)0.056 (4)0.006 (2)0.033 (3)0.000 (2)
O70.074 (4)0.034 (3)0.033 (3)0.007 (2)0.016 (3)0.003 (2)
O80.085 (4)0.042 (3)0.047 (4)0.003 (3)0.023 (3)0.006 (3)
O90.066 (3)0.041 (3)0.032 (3)0.002 (2)0.005 (2)0.001 (2)
O100.052 (3)0.040 (3)0.050 (3)0.005 (2)0.024 (3)0.008 (2)
O110.054 (4)0.065 (4)0.075 (4)0.006 (3)0.029 (3)0.018 (3)
O120.050 (3)0.036 (3)0.046 (3)0.003 (2)0.012 (3)0.004 (2)
N10.050 (4)0.058 (4)0.030 (3)0.007 (3)0.009 (3)0.000 (3)
N20.045 (4)0.062 (4)0.041 (4)0.004 (3)0.016 (3)0.001 (3)
B10.048 (5)0.032 (4)0.034 (5)0.001 (3)0.017 (4)0.004 (3)
B20.054 (5)0.033 (4)0.033 (5)0.001 (4)0.013 (4)0.003 (4)
C10.046 (5)0.043 (4)0.036 (4)0.000 (3)0.010 (4)0.003 (3)
C20.042 (4)0.032 (4)0.031 (4)0.000 (3)0.008 (3)0.003 (3)
C30.046 (4)0.031 (4)0.040 (5)0.002 (3)0.009 (4)0.003 (3)
C40.049 (5)0.047 (4)0.041 (5)0.006 (3)0.004 (4)0.012 (4)
C50.079 (6)0.045 (5)0.044 (5)0.002 (4)0.010 (4)0.019 (4)
C60.064 (6)0.061 (5)0.055 (6)0.016 (4)0.015 (5)0.016 (4)
C70.052 (5)0.050 (5)0.054 (5)0.005 (4)0.010 (4)0.010 (4)
C80.045 (4)0.040 (4)0.043 (5)0.000 (3)0.016 (4)0.001 (4)
C90.050 (4)0.041 (4)0.045 (5)0.005 (3)0.017 (4)0.005 (4)
C100.041 (4)0.042 (4)0.044 (5)0.005 (3)0.018 (3)0.003 (4)
C110.060 (5)0.073 (6)0.052 (6)0.002 (4)0.033 (5)0.003 (5)
C120.073 (6)0.081 (7)0.060 (6)0.002 (5)0.027 (5)0.025 (5)
C130.091 (8)0.055 (6)0.095 (8)0.006 (5)0.037 (7)0.035 (6)
C140.072 (6)0.044 (5)0.074 (7)0.006 (4)0.025 (5)0.006 (4)
C150.052 (4)0.036 (4)0.038 (4)0.002 (3)0.018 (4)0.003 (3)
C160.045 (4)0.040 (4)0.040 (4)0.000 (3)0.013 (3)0.003 (3)
C170.043 (4)0.054 (5)0.029 (4)0.005 (4)0.007 (3)0.007 (4)
C180.056 (5)0.083 (6)0.026 (4)0.002 (4)0.005 (4)0.006 (4)
C190.091 (7)0.078 (7)0.047 (6)0.010 (5)0.019 (5)0.026 (5)
C200.099 (8)0.061 (6)0.068 (7)0.008 (5)0.023 (6)0.030 (6)
C210.079 (6)0.040 (5)0.063 (6)0.008 (4)0.024 (5)0.004 (4)
C220.047 (5)0.043 (4)0.043 (5)0.002 (3)0.015 (4)0.004 (3)
C230.046 (4)0.034 (4)0.038 (4)0.003 (3)0.018 (3)0.001 (3)
C240.051 (5)0.033 (4)0.036 (4)0.001 (3)0.012 (4)0.004 (3)
C250.059 (5)0.052 (5)0.053 (5)0.008 (4)0.024 (4)0.000 (4)
C260.096 (8)0.052 (5)0.059 (6)0.007 (5)0.038 (6)0.013 (4)
C270.075 (6)0.059 (5)0.065 (6)0.019 (5)0.024 (5)0.031 (5)
C280.064 (6)0.055 (5)0.040 (5)0.013 (4)0.015 (4)0.008 (4)
C290.055 (5)0.070 (5)0.045 (5)0.011 (4)0.017 (4)0.001 (4)
C300.057 (5)0.095 (7)0.058 (6)0.010 (5)0.022 (5)0.009 (5)
C310.092 (8)0.069 (6)0.070 (7)0.012 (5)0.025 (6)0.013 (5)
C320.067 (6)0.061 (6)0.069 (7)0.003 (4)0.011 (5)0.001 (5)
C330.051 (5)0.073 (6)0.049 (5)0.006 (4)0.008 (4)0.013 (5)
C340.060 (5)0.079 (6)0.065 (6)0.003 (5)0.022 (5)0.022 (5)
C350.071 (6)0.065 (6)0.082 (7)0.000 (5)0.030 (5)0.004 (5)
C360.093 (8)0.072 (7)0.118 (11)0.017 (6)0.053 (8)0.023 (7)
C370.066 (6)0.083 (7)0.079 (8)0.000 (5)0.007 (6)0.036 (6)
C380.052 (5)0.075 (6)0.069 (7)0.003 (4)0.011 (5)0.010 (5)
Geometric parameters (Å, º) top
O1—C11.310 (9)C15—C161.470 (11)
O1—B11.515 (10)C16—C211.359 (11)
O2—C11.233 (9)C16—C171.389 (10)
O3—C31.364 (8)C17—C181.383 (11)
O3—B11.429 (9)C18—C191.381 (13)
O4—C81.336 (8)C18—H180.9300
O4—B11.485 (10)C19—C201.378 (14)
O5—C81.224 (9)C19—H190.9300
O6—C101.347 (8)C20—C211.387 (13)
O6—B11.422 (10)C20—H200.9300
O7—C151.323 (8)C21—H210.9300
O7—B21.477 (10)C22—C231.469 (10)
O8—C151.236 (9)C23—C241.380 (10)
O9—C171.349 (9)C23—C281.399 (10)
O9—B21.439 (10)C24—C251.385 (11)
O10—C221.316 (9)C25—C261.375 (12)
O10—B21.505 (10)C25—H250.9300
O11—C221.229 (9)C26—C271.374 (13)
O12—C241.360 (9)C26—H260.9300
O12—B21.421 (10)C27—C281.372 (12)
N1—C291.489 (10)C27—H270.9300
N1—C331.480 (10)C28—H280.9300
N1—H1A0.9000C29—C301.499 (13)
N1—H1B0.9000C29—H29A0.9700
N2—C341.482 (11)C29—H29B0.9700
N2—C381.483 (11)C30—C311.518 (14)
N2—H2A0.9000C30—H30A0.9700
N2—H2B0.9000C30—H30B0.9700
C1—C21.461 (10)C31—C321.528 (14)
C2—C31.397 (10)C31—H31A0.9700
C2—C71.398 (10)C31—H31B0.9700
C3—C41.385 (10)C32—C331.458 (13)
C4—C51.377 (12)C32—H32A0.9700
C4—H40.9300C32—H32B0.9700
C5—C61.387 (13)C33—H33A0.9700
C5—H50.9300C33—H33B0.9700
C6—C71.352 (12)C34—C351.510 (14)
C6—H60.9300C34—H34A0.9700
C7—H70.9300C34—H34B0.9700
C8—C91.452 (11)C35—C361.512 (16)
C9—C141.393 (11)C35—H35A0.9700
C9—C101.407 (11)C35—H35B0.9700
C10—C111.392 (11)C36—C371.504 (16)
C11—C121.357 (12)C36—H36A0.9700
C11—H110.9300C36—H36B0.9700
C12—C131.359 (14)C37—C381.512 (14)
C12—H120.9300C37—H37A0.9700
C13—C141.393 (14)C37—H37B0.9700
C13—H130.9300C38—H38A0.9700
C14—H140.9300C38—H38B0.9700
C33—N1—C29112.2 (6)C18—C19—H19119.5
C33—N1—H1A109.2C19—C20—C21118.7 (8)
C29—N1—H1A109.2C19—C20—H20120.6
C33—N1—H1B109.2C21—C20—H20120.6
C29—N1—H1B109.2C16—C21—C20120.8 (9)
H1A—N1—H1B107.9C16—C21—H21119.6
C34—N2—C38113.8 (7)C20—C21—H21119.6
C34—N2—H2A108.8O11—C22—O10119.4 (7)
C38—N2—H2A108.8O11—C22—C23124.0 (7)
C34—N2—H2B108.8O10—C22—C23116.6 (6)
C38—N2—H2B108.8C24—C23—C28120.1 (7)
H2A—N2—H2B107.7C24—C23—C22120.3 (6)
C1—O1—B1121.7 (6)C28—C23—C22119.7 (7)
C3—O3—B1118.5 (6)O12—C24—C23120.6 (6)
C8—O4—B1122.3 (6)O12—C24—C25118.9 (7)
C10—O6—B1118.7 (6)C23—C24—C25120.5 (7)
C15—O7—B2123.1 (6)C26—C25—C24118.7 (8)
C17—O9—B2119.3 (6)C26—C25—H25120.6
C22—O10—B2122.0 (6)C24—C25—H25120.6
C24—O12—B2117.8 (6)C27—C26—C25121.3 (8)
O6—B1—O3110.3 (6)C27—C26—H26119.4
O6—B1—O4112.7 (6)C25—C26—H26119.4
O3—B1—O4108.0 (6)C28—C27—C26120.4 (8)
O6—B1—O1107.5 (6)C28—C27—H27119.8
O3—B1—O1112.5 (6)C26—C27—H27119.8
O4—B1—O1105.9 (6)C27—C28—C23119.0 (8)
O12—B2—O9110.7 (6)C27—C28—H28120.5
O12—B2—O7108.9 (7)C23—C28—H28120.5
O9—B2—O7113.0 (6)N1—C29—C30110.3 (7)
O12—B2—O10111.7 (6)N1—C29—H29A109.6
O9—B2—O10106.7 (6)C30—C29—H29A109.6
O7—B2—O10105.9 (6)N1—C29—H29B109.6
O2—C1—O1119.4 (7)C30—C29—H29B109.6
O2—C1—C2123.6 (7)H29A—C29—H29B108.1
O1—C1—C2116.9 (6)C29—C30—C31110.6 (8)
C3—C2—C7117.7 (7)C29—C30—H30A109.5
C3—C2—C1121.0 (6)C31—C30—H30A109.5
C7—C2—C1121.2 (7)C29—C30—H30B109.5
O3—C3—C4118.8 (7)C31—C30—H30B109.5
O3—C3—C2120.2 (6)H30A—C30—H30B108.1
C4—C3—C2120.8 (7)C30—C31—C32110.0 (8)
C5—C4—C3119.8 (8)C30—C31—H31A109.7
C5—C4—H4120.1C32—C31—H31A109.7
C3—C4—H4120.1C30—C31—H31B109.7
C4—C5—C6119.6 (7)C32—C31—H31B109.7
C4—C5—H5120.2H31A—C31—H31B108.2
C6—C5—H5120.2C33—C32—C31111.6 (8)
C7—C6—C5120.7 (8)C33—C32—H32A109.3
C7—C6—H6119.6C31—C32—H32A109.3
C5—C6—H6119.6C33—C32—H32B109.3
C6—C7—C2121.2 (8)C31—C32—H32B109.3
C6—C7—H7119.4H32A—C32—H32B108.0
C2—C7—H7119.4C32—C33—N1111.4 (7)
O5—C8—O4119.3 (7)C32—C33—H33A109.3
O5—C8—C9124.2 (7)N1—C33—H33A109.3
O4—C8—C9116.5 (7)C32—C33—H33B109.3
C14—C9—C10118.9 (7)N1—C33—H33B109.3
C14—C9—C8121.4 (8)H33A—C33—H33B108.0
C10—C9—C8119.8 (6)N2—C34—C35110.7 (8)
O6—C10—C11118.5 (7)N2—C34—H34A109.5
O6—C10—C9121.4 (7)C35—C34—H34A109.5
C11—C10—C9120.1 (7)N2—C34—H34B109.5
C12—C11—C10118.9 (9)C35—C34—H34B109.5
C12—C11—H11120.6H34A—C34—H34B108.1
C10—C11—H11120.6C34—C35—C36112.1 (8)
C11—C12—C13123.0 (9)C34—C35—H35A109.2
C11—C12—H12118.5C36—C35—H35A109.2
C13—C12—H12118.5C34—C35—H35B109.2
C12—C13—C14119.1 (8)C36—C35—H35B109.2
C12—C13—H13120.4H35A—C35—H35B107.9
C14—C13—H13120.4C37—C36—C35109.5 (8)
C9—C14—C13120.0 (9)C37—C36—H36A109.8
C9—C14—H14120.0C35—C36—H36A109.8
C13—C14—H14120.0C37—C36—H36B109.8
O8—C15—O7118.4 (7)C35—C36—H36B109.8
O8—C15—C16123.8 (7)H36A—C36—H36B108.2
O7—C15—C16117.7 (6)C36—C37—C38110.9 (9)
C21—C16—C17120.6 (7)C36—C37—H37A109.5
C21—C16—C15120.4 (7)C38—C37—H37A109.5
C17—C16—C15119.0 (6)C36—C37—H37B109.5
O9—C17—C18119.5 (7)C38—C37—H37B109.5
O9—C17—C16121.4 (6)H37A—C37—H37B108.1
C18—C17—C16119.1 (7)N2—C38—C37109.6 (7)
C19—C18—C17119.8 (9)N2—C38—H38A109.7
C19—C18—H18120.1C37—C38—H38A109.7
C17—C18—H18120.1N2—C38—H38B109.7
C20—C19—C18120.9 (8)C37—C38—H38B109.7
C20—C19—H19119.5H38A—C38—H38B108.2
C10—O6—B1—O3154.0 (6)C9—C10—C11—C120.6 (12)
C10—O6—B1—O433.3 (9)C10—C11—C12—C130.9 (14)
C10—O6—B1—O183.0 (8)C11—C12—C13—C140.2 (16)
C3—O3—B1—O6154.5 (6)C10—C9—C14—C132.0 (13)
C3—O3—B1—O482.0 (7)C8—C9—C14—C13179.0 (9)
C3—O3—B1—O134.5 (9)C12—C13—C14—C91.7 (15)
C8—O4—B1—O631.5 (9)B2—O7—C15—O8172.8 (7)
C8—O4—B1—O3153.5 (6)B2—O7—C15—C164.7 (10)
C8—O4—B1—O185.8 (7)O8—C15—C16—C213.1 (11)
C1—O1—B1—O6153.1 (6)O7—C15—C16—C21174.3 (7)
C1—O1—B1—O331.6 (9)O8—C15—C16—C17176.4 (7)
C1—O1—B1—O486.2 (7)O7—C15—C16—C176.3 (10)
C24—O12—B2—O9157.6 (6)B2—O9—C17—C18159.2 (7)
C24—O12—B2—O777.7 (7)B2—O9—C17—C1621.7 (11)
C24—O12—B2—O1038.9 (9)C21—C16—C17—O9177.1 (7)
C17—O9—B2—O12152.9 (6)C15—C16—C17—O92.3 (11)
C17—O9—B2—O730.4 (10)C21—C16—C17—C182.0 (11)
C17—O9—B2—O1085.5 (8)C15—C16—C17—C18178.6 (7)
C15—O7—B2—O12145.8 (6)O9—C17—C18—C19176.8 (8)
C15—O7—B2—O922.4 (10)C16—C17—C18—C192.3 (12)
C15—O7—B2—O1094.0 (7)C17—C18—C19—C200.7 (14)
C22—O10—B2—O1231.6 (9)C18—C19—C20—C211.2 (16)
C22—O10—B2—O9152.6 (6)C17—C16—C21—C200.1 (13)
C22—O10—B2—O786.8 (8)C15—C16—C21—C20179.5 (9)
B1—O1—C1—O2168.9 (7)C19—C20—C21—C161.5 (15)
B1—O1—C1—C212.2 (9)B2—O10—C22—O11172.8 (7)
O2—C1—C2—C3174.1 (7)B2—O10—C22—C239.4 (9)
O1—C1—C2—C34.8 (10)O11—C22—C23—C24171.1 (7)
O2—C1—C2—C73.2 (11)O10—C22—C23—C246.6 (10)
O1—C1—C2—C7178.0 (7)O11—C22—C23—C288.2 (11)
B1—O3—C3—C4164.9 (7)O10—C22—C23—C28174.1 (7)
B1—O3—C3—C220.2 (10)B2—O12—C24—C2325.9 (9)
C7—C2—C3—O3178.4 (7)B2—O12—C24—C25155.6 (7)
C1—C2—C3—O31.0 (10)C28—C23—C24—O12177.8 (6)
C7—C2—C3—C43.6 (10)C22—C23—C24—O121.5 (10)
C1—C2—C3—C4173.8 (7)C28—C23—C24—C250.7 (11)
O3—C3—C4—C5178.5 (7)C22—C23—C24—C25179.9 (7)
C2—C3—C4—C53.6 (12)O12—C24—C25—C26176.8 (7)
C3—C4—C5—C61.5 (13)C23—C24—C25—C261.7 (11)
C4—C5—C6—C70.6 (14)C24—C25—C26—C271.6 (13)
C5—C6—C7—C20.6 (14)C25—C26—C27—C280.6 (14)
C3—C2—C7—C61.5 (12)C26—C27—C28—C230.5 (14)
C1—C2—C7—C6175.9 (8)C24—C23—C28—C270.4 (12)
B1—O4—C8—O5168.2 (7)C22—C23—C28—C27178.9 (8)
B1—O4—C8—C913.7 (10)C33—N1—C29—C3056.8 (9)
O5—C8—C9—C143.8 (12)N1—C29—C30—C3156.3 (10)
O4—C8—C9—C14178.2 (7)C29—C30—C31—C3255.3 (11)
O5—C8—C9—C10175.1 (8)C30—C31—C32—C3355.2 (12)
O4—C8—C9—C102.9 (10)C31—C32—C33—N155.6 (10)
B1—O6—C10—C11160.6 (7)C29—N1—C33—C3256.7 (9)
B1—O6—C10—C919.4 (10)C38—N2—C34—C3553.5 (10)
C14—C9—C10—O6179.1 (7)N2—C34—C35—C3652.9 (11)
C8—C9—C10—O60.1 (11)C34—C35—C36—C3755.8 (13)
C14—C9—C10—C110.9 (12)C35—C36—C37—C3858.2 (12)
C8—C9—C10—C11179.9 (7)C34—N2—C38—C3755.9 (11)
O6—C10—C11—C12179.4 (7)C36—C37—C38—N257.8 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O80.901.952.828 (9)163
N1—H1B···O20.901.932.829 (9)174
N2—H2A···O5i0.901.962.824 (10)159
N2—H2B···O110.901.982.855 (9)163
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC5H12N+·C14H8BO6
Mr369.17
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)19.835 (7), 16.247 (7), 12.231 (5)
β (°) 111.624 (10)
V3)3664 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.58 × 0.43 × 0.40
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.945, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
9508, 3235, 1967
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.203, 1.04
No. of reflections3235
No. of parameters487
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
O1—B11.515 (10)O7—B21.477 (10)
O3—B11.429 (9)O9—B21.439 (10)
O4—B11.485 (10)O10—B21.505 (10)
O6—B11.422 (10)O12—B21.421 (10)
O6—B1—O3110.3 (6)O12—B2—O9110.7 (6)
O6—B1—O4112.7 (6)O12—B2—O7108.9 (7)
O3—B1—O4108.0 (6)O9—B2—O7113.0 (6)
O6—B1—O1107.5 (6)O12—B2—O10111.7 (6)
O3—B1—O1112.5 (6)O9—B2—O10106.7 (6)
O4—B1—O1105.9 (6)O7—B2—O10105.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O80.901.952.828 (9)163
N1—H1B···O20.901.932.829 (9)174
N2—H2A···O5i0.901.962.824 (10)159
N2—H2B···O110.901.982.855 (9)163
Symmetry code: (i) x, y, z1.
 

References

First citationBarthel, J., Schmid, A. & Gores, H. J. (2000). J. Electrochem. Soc. 147, 21–24.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDownard, A., Nieuwenhuyzen, M., Seddon, K. R., Van den Berg, J. A., Schmidt, M. A., Vaughan, J. F. S. & Welz-Biermann, U. (2002). Cryst. Growth Des. 2, 111–119.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHan, W.-H., Li, P. & Liu, Z.-H. (2007). Acta Cryst. E63, o3946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, P. & Liu, Z. H. (2006). Z. Kristallogr. New Cryst. Struct. 221, 179–180.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J., Wang, J., Huang, X. Y. & Chen, J. T. (2005). Z. Kristallogr. New Cryst. Struct. 220, 261–262.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds