organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­­oxy-N-phenyl­aniline

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 6 November 2008; accepted 24 November 2008; online 17 December 2008)

In the mol­ecule of the title compound, C13H13NO, the two benzene rings are oriented at a dihedral angle of 59.9 (2)°. In the crystal structure, the benzene rings of neighbouring mol­ecules are oriented nearly parallel or perpendicular, making dihedral angles of 2.8 (2) and 79.5 (2)°, respectively. The crystal structure is stabilized by a network of C—H⋯π and N—H⋯π inter­actions.

Related literature

For general background, see: Acheson (1973[Acheson, R. M. (1973). Acridines, 2nd ed. New York: Interscience.]); Gatto et al. (2006[Gatto, V. J., Elnagar, H. Y., Moehle, W. E. & Schneller, E. R. (2006). Lubrication Sci. 19, 25-40.]); Li et al. (2002[Li, H., Yao, Y., Shen, Q. & Weng, L. (2002). Organometallics, 21, 2529-2532.]); Oettmeier & Renger (1980[Oettmeier, W. & Renger, G. (1980). Biochim. Biophys. Acta, 593, 113-124.]); Razavi & McCapra (2000a[Razavi, Z. & McCapra, F. (2000a). Luminescence, 15, 239-245.],b[Razavi, Z. & McCapra, F. (2000b). Luminescence, 15, 245-249.]); Steiner (2000[Steiner, T. (2000). Acta Cryst. C56, 874-875.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]); Velusamy et al. (2005[Velusamy, M., Justin Thomas, K. R., Lin, J. T. & Ven, Y. S. (2005). Tetrahedron Lett. 46, 7647-7651.]); Zomer & Jacquemijns (2001[Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529-549. New York: Marcel Dekker.]). For related structures, see: Rodriguez & Bunge (2003[Rodriguez, M. A. & Bunge, S. D. (2003). Acta Cryst. E59, o1123-o1125.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO

  • Mr = 199.24

  • Orthorhombic, P c c n

  • a = 15.090 (3) Å

  • b = 18.394 (4) Å

  • c = 7.596 (2) Å

  • V = 2108.4 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 (2) K

  • 0.05 × 0.03 × 0.02 mm

Data collection
  • Kuma KM-4 diffractometer

  • Absorption correction: none

  • 2443 measured reflections

  • 1851 independent reflections

  • 1005 reflections with I > 2σ(I)

  • Rint = 0.035

  • 3 standard reflections every 200 reflections intensity decay: 0.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.131

  • S = 0.99

  • 1851 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
C—H⋯π and N—H⋯π inter­actions (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg2i 0.93 2.91 3.671 (2) 139
N7—H7⋯Cg1ii 0.86 2.88 3.593 (2) 142
C10—H10⋯Cg1iii 0.93 2.92 3.723 (3) 145
Symmetry codes: (i) x, y, z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1. Cg1 and Cg2 are the centroids of the C1–C6 ring and C8–C13 rings, respectively.

Data collection: KM-4 Software (Oxford Diffraction, 2003[Oxford Diffraction (2003). KM-4 Software. Oxford Diffraction, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Diphenylamines are an important class of aromatic amines widely employed in organic (Acheson, 1973) and organometallic (Li et al., 2002) syntheses. They exhibit interesting biological activities (Oettmeier & Renger, 1980). Some of them are known to be useful antioxidants for modern lubricants (Gatto et al., 2006) or as fragments of molecules with interesting electro-optical properties (Velusamy et al., 2005). Diphenylamines are precursors of acridine-9-carboxylic acids (Acheson, 1973; Zomer & Jacquemijns, 2001), which are starting materials for syntheses of acridinium chemiluminogenic tracers (Razavi & McCapra, 2000a,b; Zomer & Jacquemijns, 2001). The presence of a methoxy group in such tracers enhances their stability in an aquatic environment and brings about a red shifting of the emitted light. The latter feature should increase the potential applicability of acridinium chemiluminogens in immunoassays (Zomer & Jacquemijns, 2001).

In the molecule of the title compound (Fig. 1) the bond lengths and angles are in accordance with the corresponding values in diphenylamine (Rodriguez & Bunge, 2003). Rings A (C1-C6) and B (C8-C13) are planar and oriented at a dihedral angle of 59.9 (2)°.

In the crystal structure, benzene ring systems of neighbouring molecules are oriented nearly parallel or perpendicular. The respective angles between them are 2.8 (2)° and 79.5 (2)°. The crystal structure of the title compound is stabilized by a network of specific C—H···π and N—H···π interactions (Fig. 2 and Table 1) which exhibit an attractive nature (Steiner, 2000; Takahashi et al., 2001), as well as by non-specific dispersive interactions.

Related literature top

For general background, see: Acheson (1973); Li et al. (2002); Oettmeier & Renger (1980); Gatto et al. (2006); Velusamy et al. (2005); Razavi & McCapra (2000a,b); Steiner (2000); Takahashi et al. (2001). For related structres, see: Rodriguez & Bunge (2003); Zomer & Jacquemijns (2001).

Experimental top

The title compound was synthesized by the condensation of 4-methoxy-benzenamine and bromobenzene in the presence of anhydrous potassium carbonate and a catalytic amount of copper iodide (yield; 75%) (Zomer & Jacquemijns, 2001). Elemental analysis (% found/calculated): C 78.16/78.36, H 6.58/6.72, N 7.02/7.03. Colorless crystals (m.p. 379-380 K) suitable for X-ray analysis were grown from absolute ethanol solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: KM-4 Software (Oxford Diffraction, 2003); cell refinement: KM-4 Software (Oxford Diffraction, 2003); data reduction: KM-4 Software (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 25% probability level. Cg1 and Cg2 denote the ring centroids.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal packing, viewed approximately along the a axis. The C—H···π and N—H···π interactions are represented by dotted lines. H atoms not involved in interactions have been omitted [symmetry codes: (i) x, y, 1 + z; (ii) x, 1/2 - y, -1/2 + z; (iii) 1 - x, 1 - y, 1 - z].
4-Methoxy-N-phenylaniline top
Crystal data top
C13H13NOF(000) = 848
Mr = 199.24Dx = 1.255 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 50 reflections
a = 15.090 (3) Åθ = 2.2–25°
b = 18.394 (4) ŵ = 0.08 mm1
c = 7.596 (2) ÅT = 295 K
V = 2108.4 (8) Å3Block, colorless
Z = 80.05 × 0.03 × 0.02 mm
Data collection top
Kuma KM-4
diffractometer
Rint = 0.035
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.2°
Graphite monochromatorh = 017
θ/2θ scansk = 210
2443 measured reflectionsl = 92
1851 independent reflections3 standard reflections every 200 reflections
1005 reflections with I > 2σ(I) intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.081P)2 + 0.0542P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
1851 reflectionsΔρmax = 0.16 e Å3
138 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)
Crystal data top
C13H13NOV = 2108.4 (8) Å3
Mr = 199.24Z = 8
Orthorhombic, PccnMo Kα radiation
a = 15.090 (3) ŵ = 0.08 mm1
b = 18.394 (4) ÅT = 295 K
c = 7.596 (2) Å0.05 × 0.03 × 0.02 mm
Data collection top
Kuma KM-4
diffractometer
Rint = 0.035
2443 measured reflections3 standard reflections every 200 reflections
1851 independent reflections intensity decay: 0.5%
1005 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 0.99Δρmax = 0.16 e Å3
1851 reflectionsΔρmin = 0.15 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.49051 (14)0.32843 (9)0.6655 (3)0.0526 (6)
C20.52660 (14)0.36650 (10)0.8048 (3)0.0533 (5)
H20.58610.37940.80100.064*
C30.47688 (12)0.38576 (10)0.9489 (3)0.0500 (5)
H30.50250.41171.04090.060*
C40.38875 (13)0.36634 (10)0.9558 (3)0.0491 (5)
C50.35215 (14)0.32732 (10)0.8191 (3)0.0553 (6)
H50.29300.31330.82440.066*
C60.40192 (15)0.30921 (10)0.6763 (3)0.0577 (6)
H60.37600.28350.58430.069*
N70.54179 (14)0.30655 (9)0.5208 (2)0.0679 (6)
H70.54150.26100.49540.082*
C80.59269 (13)0.35133 (11)0.4155 (3)0.0488 (5)
C90.59081 (13)0.42662 (10)0.4292 (3)0.0535 (5)
H90.55610.44860.51530.064*
C100.63953 (16)0.46850 (13)0.3170 (3)0.0701 (7)
H100.63770.51880.32790.084*
C110.69087 (19)0.43785 (18)0.1892 (3)0.0882 (9)
H110.72330.46690.11240.106*
C120.69399 (16)0.36363 (17)0.1759 (3)0.0809 (8)
H120.72910.34220.08970.097*
C130.64619 (14)0.32079 (13)0.2877 (3)0.0633 (6)
H130.64970.27050.27770.076*
O140.33254 (9)0.38212 (8)1.0914 (2)0.0671 (5)
C150.36725 (18)0.41960 (15)1.2379 (3)0.0809 (7)
H15A0.32200.42461.32600.121*
H15B0.38710.46691.20180.121*
H15C0.41620.39281.28570.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0758 (14)0.0385 (10)0.0434 (11)0.0006 (9)0.0030 (11)0.0020 (9)
C20.0537 (11)0.0521 (11)0.0542 (13)0.0044 (9)0.0006 (10)0.0014 (9)
C30.0555 (11)0.0497 (10)0.0448 (11)0.0027 (9)0.0027 (10)0.0019 (9)
C40.0534 (11)0.0462 (10)0.0475 (11)0.0004 (9)0.0005 (10)0.0042 (9)
C50.0531 (12)0.0536 (11)0.0593 (14)0.0081 (9)0.0085 (11)0.0039 (10)
C60.0764 (15)0.0458 (11)0.0510 (13)0.0124 (10)0.0146 (11)0.0016 (10)
N70.1075 (14)0.0417 (8)0.0546 (11)0.0010 (9)0.0181 (11)0.0072 (8)
C80.0529 (11)0.0553 (11)0.0383 (10)0.0050 (8)0.0078 (9)0.0012 (9)
C90.0610 (12)0.0523 (11)0.0471 (12)0.0029 (9)0.0039 (10)0.0022 (10)
C100.0821 (16)0.0706 (14)0.0577 (15)0.0181 (12)0.0034 (13)0.0091 (12)
C110.0803 (17)0.125 (2)0.0595 (17)0.0421 (17)0.0081 (14)0.0006 (16)
C120.0543 (13)0.126 (2)0.0622 (16)0.0077 (14)0.0080 (12)0.0266 (15)
C130.0589 (13)0.0755 (14)0.0556 (13)0.0104 (11)0.0050 (11)0.0181 (12)
O140.0578 (9)0.0794 (10)0.0642 (10)0.0026 (7)0.0064 (7)0.0103 (8)
C150.0766 (15)0.1028 (18)0.0634 (16)0.0028 (14)0.0076 (14)0.0203 (15)
Geometric parameters (Å, º) top
C1—C21.381 (3)C8—C91.389 (3)
C1—C61.385 (3)C9—C101.364 (3)
C1—N71.403 (3)C9—H90.9300
C2—C31.373 (3)C10—C111.364 (4)
C2—H20.9300C10—H100.9300
C3—C41.378 (3)C11—C121.370 (4)
C3—H30.9300C11—H110.9300
C4—O141.365 (2)C12—C131.365 (3)
C4—C51.378 (3)C12—H120.9300
C5—C61.361 (3)C13—H130.9300
C5—H50.9300O14—C151.410 (3)
C6—H60.9300C15—H15A0.9600
N7—C81.381 (3)C15—H15B0.9600
N7—H70.8600C15—H15C0.9600
C8—C131.382 (3)
C2—C1—C6117.68 (19)C13—C8—C9118.0 (2)
C2—C1—N7121.9 (2)C10—C9—C8120.4 (2)
C6—C1—N7120.36 (19)C10—C9—H9119.8
C3—C2—C1121.74 (19)C8—C9—H9119.8
C3—C2—H2119.1C9—C10—C11121.1 (2)
C1—C2—H2119.1C9—C10—H10119.4
C2—C3—C4119.42 (19)C11—C10—H10119.4
C2—C3—H3120.3C10—C11—C12119.0 (2)
C4—C3—H3120.3C10—C11—H11120.5
O14—C4—C3125.00 (18)C12—C11—H11120.5
O14—C4—C5115.48 (17)C13—C12—C11120.8 (2)
C3—C4—C5119.52 (19)C13—C12—H12119.6
C6—C5—C4120.48 (18)C11—C12—H12119.6
C6—C5—H5119.8C12—C13—C8120.7 (2)
C4—C5—H5119.8C12—C13—H13119.6
C5—C6—C1121.15 (19)C8—C13—H13119.6
C5—C6—H6119.4C4—O14—C15117.9 (2)
C1—C6—H6119.4O14—C15—H15A109.5
C1—N7—C8126.1 (2)O14—C15—H15B109.5
C8—N7—H7116.9H15A—C15—H15B109.5
C1—N7—H7116.9O14—C15—H15C109.5
N7—C8—C13119.30 (19)H15A—C15—H15C109.5
N7—C8—C9122.67 (18)H15B—C15—H15C109.5
C6—C1—C2—C30.8 (3)C1—N7—C8—C13174.0 (2)
N7—C1—C2—C3177.82 (17)C1—N7—C8—C97.8 (3)
C1—C2—C3—C40.4 (3)N7—C8—C9—C10177.21 (19)
C2—C3—C4—O14179.92 (17)C13—C8—C9—C101.1 (3)
C2—C3—C4—C50.6 (3)C8—C9—C10—C110.1 (3)
O14—C4—C5—C6179.34 (17)C9—C10—C11—C120.9 (4)
C3—C4—C5—C61.3 (3)C10—C11—C12—C130.4 (4)
C4—C5—C6—C10.9 (3)C11—C12—C13—C80.8 (4)
C2—C1—C6—C50.1 (3)N7—C8—C13—C12176.8 (2)
N7—C1—C6—C5177.18 (18)C9—C8—C13—C121.5 (3)
C2—C1—N7—C855.5 (3)C3—C4—O14—C151.6 (3)
C6—C1—N7—C8127.6 (2)C5—C4—O14—C15177.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg2i0.932.913.671 (2)139
N7—H7···Cg1ii0.862.883.593 (2)142
C10—H10···Cg1iii0.932.923.723 (3)145
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H13NO
Mr199.24
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)295
a, b, c (Å)15.090 (3), 18.394 (4), 7.596 (2)
V3)2108.4 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.05 × 0.03 × 0.02
Data collection
DiffractometerKuma KM-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2443, 1851, 1005
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.131, 0.99
No. of reflections1851
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: KM-4 Software (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg2i0.932.913.671 (2)139
N7—H7···Cg1ii0.862.883.593 (2)142
C10—H10···Cg1iii0.932.923.723 (3)145
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010.

References

First citationAcheson, R. M. (1973). Acridines, 2nd ed. New York: Interscience.  Google Scholar
First citationGatto, V. J., Elnagar, H. Y., Moehle, W. E. & Schneller, E. R. (2006). Lubrication Sci. 19, 25–40.  CrossRef Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLi, H., Yao, Y., Shen, Q. & Weng, L. (2002). Organometallics, 21, 2529–2532.  Web of Science CSD CrossRef CAS Google Scholar
First citationOettmeier, W. & Renger, G. (1980). Biochim. Biophys. Acta, 593, 113–124.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2003). KM-4 Software. Oxford Diffraction, Wrocław, Poland.  Google Scholar
First citationRazavi, Z. & McCapra, F. (2000a). Luminescence, 15, 239–245.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRazavi, Z. & McCapra, F. (2000b). Luminescence, 15, 245–249.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRodriguez, M. A. & Bunge, S. D. (2003). Acta Cryst. E59, o1123–o1125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2000). Acta Cryst. C56, 874–875.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationVelusamy, M., Justin Thomas, K. R., Lin, J. T. & Ven, Y. S. (2005). Tetrahedron Lett. 46, 7647–7651.  Web of Science CSD CrossRef CAS Google Scholar
First citationZomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds