organic compounds
9-Ethyl-10-methylacridinium trifluoromethanesulfonate
aFaculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the molecule of the title compound, C16H16N+·CF3SO3−, the central ring adopts a flattened-boat conformation, and the two aromatic rings are oriented at a dihedral angle of 3.94 (2)°. In the weak intermolecular hydrogen bonds link the molecules. There are π–π contacts between the aromatic rings and the central ring and one of the aromatic rings [centroid–centroid distances = 3.874 (2), 3.945 (2) and 3.814 (2) Å]. There is also an S—O⋯π contact between the central ring and one of the O atoms of the anion.
Related literature
For general background, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter & Sanders (1990); Steiner (1991); Suzuki & Tanaka (2001); Zomer & Jacquemijns (2001). For related structures, see: Huta et al. (2002); Krzymiński et al. (2007); Meszko et al. (2002); Sikorski et al. (2005a,b,c, 2006, 2008); Storoniak et al. (2000); Tsuge et al. (1965). For ring puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808039676/hk2577sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808039676/hk2577Isup2.hkl
9-Ethylacridine was synthesized by heating a mixture of N-phenylaniline with an equimolar amount of propanoic acid, both dispersed in molten zinc chloride (493 K, 26 h) (Tsuge et al., 1965). The crude product was purified by gravitational
(SiO2, n-hexane-ethyl acetate, 5:1 v/v). 9-Ethyl-10-methylacridinium trifluoromethanesulfonate was obtained by dissolving 9-ethylacridine with a fivefold molar excess of methyl trifluoromethanesulfonate in anhydrous dichloromethane and leaving the mixture for 3 h (Ar atmosphere, room temperature). The crude salt that precipitated was dissolved in a small amount of ethanol, filtered, and again precipitated with a 25 v/v excess of diethyl ether (yield; 89%). Pale-yellow crystals suitable for X-ray analysis were grown from absolute ethanol solution.H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1 and Cg2 denote the ring centroids. | |
Fig. 2. The arrangement of the ions in the crystal structure. The C—H···O interactions are represented by dashed lines, the π-π and S—O···π interactions by dotted lines. H atoms not involved in the interactions have been omitted. [Symmetry codes: (i) x, y, z + 1; (ii) x, y - 1, z + 1; (iii) -x, -y + 2, -z + 1; (iv) -x, -y + 1, -z + 2; (v) -x + 1, -y + 1, -z + 2; (vi) -x + 1, -y + 1, -z + 1.] |
C16H16N+·CF3SO3− | Z = 2 |
Mr = 371.37 | F(000) = 384 |
Triclinic, P1 | Dx = 1.515 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.771 (2) Å | Cell parameters from 2857 reflections |
b = 9.440 (2) Å | θ = 3.1–25.0° |
c = 11.898 (2) Å | µ = 0.25 mm−1 |
α = 76.76 (3)° | T = 295 K |
β = 74.04 (3)° | Plate, pale-yellow |
γ = 82.14 (3)° | 0.5 × 0.5 × 0.05 mm |
V = 814.3 (3) Å3 |
Oxford Diffraction GEMINI R ULTRA Ruby CCD diffractometer | 2857 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2078 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.0°, θmin = 3.1° |
ω scans | h = −9→8 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −8→11 |
Tmin = 0.870, Tmax = 0.988 | l = −13→14 |
7781 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0604P)2 + 0.0136P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2857 reflections | Δρmax = 0.22 e Å−3 |
229 parameters | Δρmin = −0.25 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.014 (3) |
C16H16N+·CF3SO3− | γ = 82.14 (3)° |
Mr = 371.37 | V = 814.3 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.771 (2) Å | Mo Kα radiation |
b = 9.440 (2) Å | µ = 0.25 mm−1 |
c = 11.898 (2) Å | T = 295 K |
α = 76.76 (3)° | 0.5 × 0.5 × 0.05 mm |
β = 74.04 (3)° |
Oxford Diffraction GEMINI R ULTRA Ruby CCD diffractometer | 2857 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 2078 reflections with I > 2σ(I) |
Tmin = 0.870, Tmax = 0.988 | Rint = 0.020 |
7781 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.22 e Å−3 |
2857 reflections | Δρmin = −0.25 e Å−3 |
229 parameters |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3057 (2) | 0.6242 (2) | 0.97192 (18) | 0.0479 (5) | |
H1 | 0.3455 | 0.7172 | 0.9413 | 0.057* | |
C2 | 0.2727 (3) | 0.5708 (2) | 1.09064 (19) | 0.0541 (5) | |
H2 | 0.2876 | 0.6276 | 1.1411 | 0.065* | |
C3 | 0.2161 (3) | 0.4299 (2) | 1.13769 (19) | 0.0551 (5) | |
H3 | 0.1946 | 0.3940 | 1.2195 | 0.066* | |
C4 | 0.1918 (3) | 0.3445 (2) | 1.06641 (18) | 0.0490 (5) | |
H4 | 0.1571 | 0.2503 | 1.0993 | 0.059* | |
C5 | 0.1504 (3) | 0.2917 (2) | 0.68005 (19) | 0.0526 (5) | |
H5 | 0.1046 | 0.2013 | 0.7141 | 0.063* | |
C6 | 0.1686 (3) | 0.3478 (2) | 0.5618 (2) | 0.0616 (6) | |
H6 | 0.1340 | 0.2947 | 0.5159 | 0.074* | |
C7 | 0.2377 (3) | 0.4825 (2) | 0.50750 (19) | 0.0594 (6) | |
H7 | 0.2505 | 0.5175 | 0.4262 | 0.071* | |
C8 | 0.2859 (3) | 0.5621 (2) | 0.57323 (17) | 0.0509 (5) | |
H8 | 0.3312 | 0.6522 | 0.5364 | 0.061* | |
C9 | 0.3131 (2) | 0.59454 (18) | 0.76881 (17) | 0.0397 (4) | |
N10 | 0.18592 (19) | 0.31700 (15) | 0.86993 (13) | 0.0387 (4) | |
C11 | 0.2806 (2) | 0.54049 (18) | 0.89252 (17) | 0.0394 (4) | |
C12 | 0.2190 (2) | 0.39871 (18) | 0.94283 (16) | 0.0388 (4) | |
C13 | 0.2688 (2) | 0.51098 (19) | 0.69798 (16) | 0.0398 (4) | |
C14 | 0.2018 (2) | 0.37195 (19) | 0.75118 (17) | 0.0397 (4) | |
C15 | 0.1358 (3) | 0.1658 (2) | 0.92047 (19) | 0.0548 (5) | |
H15A | 0.1862 | 0.1064 | 0.8619 | 0.082* | |
H15B | 0.0074 | 0.1650 | 0.9426 | 0.082* | |
H15C | 0.1813 | 0.1277 | 0.9897 | 0.082* | |
C16 | 0.3835 (3) | 0.7413 (2) | 0.71458 (19) | 0.0492 (5) | |
H16A | 0.4536 | 0.7416 | 0.6333 | 0.059* | |
H16B | 0.4621 | 0.7601 | 0.7594 | 0.059* | |
C17 | 0.2316 (3) | 0.8623 (2) | 0.7141 (2) | 0.0590 (6) | |
H17A | 0.2808 | 0.9541 | 0.6753 | 0.088* | |
H17B | 0.1670 | 0.8665 | 0.7948 | 0.088* | |
H17C | 0.1515 | 0.8423 | 0.6720 | 0.088* | |
C18 | 0.2605 (3) | 0.9709 (2) | 0.36020 (18) | 0.0563 (5) | |
F19 | 0.12725 (18) | 0.89034 (15) | 0.42780 (11) | 0.0835 (4) | |
F20 | 0.19886 (19) | 1.11050 (15) | 0.35499 (12) | 0.0838 (4) | |
F21 | 0.3880 (2) | 0.94796 (18) | 0.41894 (12) | 0.0913 (5) | |
S22 | 0.34301 (7) | 0.92827 (5) | 0.21309 (4) | 0.0488 (2) | |
O23 | 0.4120 (2) | 0.77973 (17) | 0.23799 (17) | 0.0817 (5) | |
O24 | 0.18424 (19) | 0.95139 (17) | 0.17045 (13) | 0.0650 (4) | |
O25 | 0.47217 (19) | 1.03268 (17) | 0.15403 (13) | 0.0688 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0441 (11) | 0.0382 (11) | 0.0692 (14) | −0.0014 (8) | −0.0219 (10) | −0.0183 (10) |
C2 | 0.0527 (13) | 0.0543 (13) | 0.0663 (14) | 0.0040 (10) | −0.0248 (11) | −0.0271 (11) |
C3 | 0.0548 (13) | 0.0607 (14) | 0.0535 (12) | 0.0015 (10) | −0.0206 (10) | −0.0138 (10) |
C4 | 0.0473 (12) | 0.0422 (11) | 0.0587 (13) | −0.0025 (9) | −0.0182 (9) | −0.0072 (9) |
C5 | 0.0559 (13) | 0.0417 (12) | 0.0660 (14) | −0.0073 (9) | −0.0171 (10) | −0.0182 (10) |
C6 | 0.0667 (15) | 0.0633 (15) | 0.0669 (15) | −0.0079 (12) | −0.0235 (12) | −0.0275 (12) |
C7 | 0.0609 (14) | 0.0682 (15) | 0.0523 (12) | −0.0046 (11) | −0.0177 (11) | −0.0147 (11) |
C8 | 0.0478 (12) | 0.0491 (12) | 0.0555 (13) | −0.0064 (9) | −0.0130 (10) | −0.0083 (10) |
C9 | 0.0296 (10) | 0.0320 (10) | 0.0584 (12) | −0.0004 (7) | −0.0121 (8) | −0.0107 (8) |
N10 | 0.0355 (8) | 0.0285 (8) | 0.0541 (10) | −0.0026 (6) | −0.0129 (7) | −0.0103 (7) |
C11 | 0.0288 (9) | 0.0336 (10) | 0.0600 (12) | 0.0019 (7) | −0.0154 (8) | −0.0155 (8) |
C12 | 0.0305 (9) | 0.0329 (10) | 0.0557 (12) | 0.0018 (7) | −0.0145 (8) | −0.0124 (8) |
C13 | 0.0318 (10) | 0.0346 (10) | 0.0540 (11) | −0.0005 (7) | −0.0108 (8) | −0.0124 (8) |
C14 | 0.0330 (10) | 0.0340 (10) | 0.0547 (12) | 0.0009 (7) | −0.0125 (8) | −0.0146 (8) |
C15 | 0.0676 (14) | 0.0329 (11) | 0.0676 (13) | −0.0116 (10) | −0.0219 (11) | −0.0070 (9) |
C16 | 0.0468 (12) | 0.0394 (11) | 0.0621 (12) | −0.0107 (9) | −0.0124 (9) | −0.0093 (9) |
C17 | 0.0638 (14) | 0.0367 (12) | 0.0740 (14) | −0.0036 (10) | −0.0152 (11) | −0.0091 (10) |
C18 | 0.0564 (13) | 0.0557 (14) | 0.0565 (13) | −0.0210 (11) | −0.0115 (11) | −0.0041 (10) |
F19 | 0.0803 (10) | 0.0913 (11) | 0.0695 (9) | −0.0423 (8) | 0.0020 (7) | −0.0019 (7) |
F20 | 0.0990 (11) | 0.0619 (9) | 0.0841 (9) | −0.0101 (8) | 0.0033 (8) | −0.0317 (7) |
F21 | 0.0951 (11) | 0.1268 (13) | 0.0649 (9) | −0.0367 (10) | −0.0363 (8) | −0.0091 (8) |
S22 | 0.0461 (3) | 0.0466 (3) | 0.0603 (3) | −0.0064 (2) | −0.0172 (2) | −0.0179 (2) |
O23 | 0.0841 (12) | 0.0528 (10) | 0.1235 (14) | 0.0168 (8) | −0.0476 (11) | −0.0355 (9) |
O24 | 0.0598 (9) | 0.0738 (10) | 0.0708 (9) | −0.0122 (8) | −0.0342 (8) | −0.0078 (8) |
O25 | 0.0612 (10) | 0.0840 (11) | 0.0630 (9) | −0.0324 (8) | 0.0022 (7) | −0.0248 (8) |
C1—C2 | 1.351 (3) | N10—C14 | 1.366 (2) |
C1—C11 | 1.428 (2) | N10—C12 | 1.377 (2) |
C1—H1 | 0.9300 | N10—C15 | 1.477 (2) |
C2—C3 | 1.399 (3) | C11—C12 | 1.424 (2) |
C2—H2 | 0.9300 | C13—C14 | 1.421 (3) |
C3—C4 | 1.359 (3) | C15—H15A | 0.9600 |
C3—H3 | 0.9300 | C15—H15B | 0.9600 |
C4—C12 | 1.408 (3) | C15—H15C | 0.9600 |
C4—H4 | 0.9300 | C16—C17 | 1.526 (3) |
C5—C6 | 1.360 (3) | C16—H16A | 0.9700 |
C5—C14 | 1.418 (3) | C16—H16B | 0.9700 |
C5—H5 | 0.9300 | C17—H17A | 0.9600 |
C6—C7 | 1.394 (3) | C17—H17B | 0.9600 |
C6—H6 | 0.9300 | C17—H17C | 0.9600 |
C7—C8 | 1.351 (3) | F19—C18 | 1.332 (2) |
C7—H7 | 0.9300 | F20—C18 | 1.333 (3) |
C8—C13 | 1.426 (3) | F21—C18 | 1.331 (2) |
C8—H8 | 0.9300 | S22—O25 | 1.4276 (15) |
C9—C11 | 1.406 (3) | S22—O24 | 1.4308 (14) |
C9—C13 | 1.411 (2) | S22—C18 | 1.809 (2) |
C9—C16 | 1.496 (3) | O23—S22 | 1.4257 (16) |
C2—C1—C11 | 121.23 (19) | C9—C13—C14 | 119.89 (17) |
C2—C1—H1 | 119.4 | C9—C13—C8 | 122.18 (17) |
C11—C1—H1 | 119.4 | C14—C13—C8 | 117.92 (16) |
C1—C2—C3 | 120.02 (18) | N10—C14—C5 | 120.50 (17) |
C1—C2—H2 | 120.0 | N10—C14—C13 | 120.14 (15) |
C3—C2—H2 | 120.0 | C5—C14—C13 | 119.36 (18) |
C4—C3—C2 | 121.4 (2) | N10—C15—H15A | 109.5 |
C4—C3—H3 | 119.3 | N10—C15—H15B | 109.5 |
C2—C3—H3 | 119.3 | H15A—C15—H15B | 109.5 |
C3—C4—C12 | 120.01 (19) | N10—C15—H15C | 109.5 |
C3—C4—H4 | 120.0 | H15A—C15—H15C | 109.5 |
C12—C4—H4 | 120.0 | H15B—C15—H15C | 109.5 |
C6—C5—C14 | 119.59 (19) | C9—C16—C17 | 111.60 (16) |
C6—C5—H5 | 120.2 | C9—C16—H16A | 109.3 |
C14—C5—H5 | 120.2 | C17—C16—H16A | 109.3 |
C5—C6—C7 | 121.87 (18) | C9—C16—H16B | 109.3 |
C5—C6—H6 | 119.1 | C17—C16—H16B | 109.3 |
C7—C6—H6 | 119.1 | H16A—C16—H16B | 108.0 |
C8—C7—C6 | 119.9 (2) | C16—C17—H17A | 109.5 |
C8—C7—H7 | 120.1 | C16—C17—H17B | 109.5 |
C6—C7—H7 | 120.1 | H17A—C17—H17B | 109.5 |
C7—C8—C13 | 121.37 (19) | C16—C17—H17C | 109.5 |
C7—C8—H8 | 119.3 | H17A—C17—H17C | 109.5 |
C13—C8—H8 | 119.3 | H17B—C17—H17C | 109.5 |
C11—C9—C13 | 118.54 (16) | F21—C18—F19 | 106.83 (16) |
C11—C9—C16 | 120.65 (16) | F21—C18—F20 | 106.57 (17) |
C13—C9—C16 | 120.72 (17) | F19—C18—F20 | 107.29 (19) |
C14—N10—C12 | 121.38 (15) | F21—C18—S22 | 112.10 (16) |
C14—N10—C15 | 119.21 (14) | F19—C18—S22 | 112.04 (14) |
C12—N10—C15 | 119.40 (16) | F20—C18—S22 | 111.67 (14) |
C9—C11—C12 | 120.23 (15) | O23—S22—O25 | 116.29 (11) |
C9—C11—C1 | 122.06 (17) | O23—S22—O24 | 115.01 (10) |
C12—C11—C1 | 117.71 (18) | O25—S22—O24 | 114.73 (10) |
N10—C12—C4 | 120.96 (17) | O23—S22—C18 | 102.68 (11) |
N10—C12—C11 | 119.48 (17) | O25—S22—C18 | 102.77 (9) |
C4—C12—C11 | 119.55 (16) | O24—S22—C18 | 102.49 (10) |
C11—C1—C2—C3 | 1.2 (3) | C16—C9—C13—C8 | −0.9 (3) |
C1—C2—C3—C4 | −0.5 (3) | C7—C8—C13—C9 | −177.97 (18) |
C2—C3—C4—C12 | −1.7 (3) | C7—C8—C13—C14 | 1.0 (3) |
C14—C5—C6—C7 | 0.3 (3) | C12—N10—C14—C5 | −173.83 (16) |
C5—C6—C7—C8 | −1.1 (3) | C15—N10—C14—C5 | 7.4 (3) |
C6—C7—C8—C13 | 0.4 (3) | C12—N10—C14—C13 | 5.7 (2) |
C13—C9—C11—C12 | 5.4 (2) | C15—N10—C14—C13 | −173.07 (16) |
C16—C9—C11—C12 | −178.00 (15) | C6—C5—C14—N10 | −179.46 (17) |
C13—C9—C11—C1 | −174.00 (16) | C6—C5—C14—C13 | 1.0 (3) |
C16—C9—C11—C1 | 2.6 (3) | C9—C13—C14—N10 | −2.2 (3) |
C2—C1—C11—C9 | 179.61 (16) | C8—C13—C14—N10 | 178.83 (16) |
C2—C1—C11—C12 | 0.2 (3) | C9—C13—C14—C5 | 177.31 (17) |
C14—N10—C12—C4 | 176.08 (16) | C8—C13—C14—C5 | −1.7 (3) |
C15—N10—C12—C4 | −5.2 (2) | C11—C9—C16—C17 | −87.9 (2) |
C14—N10—C12—C11 | −3.5 (2) | C13—C9—C16—C17 | 88.5 (2) |
C15—N10—C12—C11 | 175.24 (16) | O23—S22—C18—F21 | 56.86 (17) |
C3—C4—C12—N10 | −176.51 (16) | O25—S22—C18—F21 | −64.24 (17) |
C3—C4—C12—C11 | 3.1 (3) | O24—S22—C18—F21 | 176.45 (14) |
C9—C11—C12—N10 | −2.2 (2) | O23—S22—C18—F19 | −63.24 (18) |
C1—C11—C12—N10 | 177.29 (15) | O25—S22—C18—F19 | 175.66 (15) |
C9—C11—C12—C4 | 178.25 (16) | O24—S22—C18—F19 | 56.35 (18) |
C1—C11—C12—C4 | −2.3 (2) | O23—S22—C18—F20 | 176.37 (14) |
C11—C9—C13—C14 | −3.3 (3) | O25—S22—C18—F20 | 55.27 (17) |
C16—C9—C13—C14 | −179.86 (15) | O24—S22—C18—F20 | −64.04 (16) |
C11—C9—C13—C8 | 175.63 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O23i | 0.93 | 2.47 | 3.369 (3) | 164 |
C15—H15C···O24ii | 0.96 | 2.40 | 3.276 (3) | 151 |
C16—H16B···O25iii | 0.97 | 2.58 | 3.377 (3) | 140 |
Symmetry codes: (i) x, y, z+1; (ii) x, y−1, z+1; (iii) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H16N+·CF3SO3− |
Mr | 371.37 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 7.771 (2), 9.440 (2), 11.898 (2) |
α, β, γ (°) | 76.76 (3), 74.04 (3), 82.14 (3) |
V (Å3) | 814.3 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.5 × 0.5 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction GEMINI R ULTRA Ruby CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.870, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7781, 2857, 2078 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.102, 1.08 |
No. of reflections | 2857 |
No. of parameters | 229 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.25 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O23i | 0.93 | 2.47 | 3.369 (3) | 164 |
C15—H15C···O24ii | 0.96 | 2.40 | 3.276 (3) | 151 |
C16—H16B···O25iii | 0.97 | 2.58 | 3.377 (3) | 140 |
Symmetry codes: (i) x, y, z+1; (ii) x, y−1, z+1; (iii) −x+1, −y+2, −z+1. |
CgI | CgJ | Cg···Cg | Dihedral angle | Interplanar distance | Offset |
1 | 2iv | 3.814 (2) | 3.88 | 3.517 (2) | 5.188 |
2 | 1iv | 3.814 (2) | 3.88 | 3.542 (2) | 5.205 |
2 | 2iv | 3.945 (2) | 0.02 | 3.578 (2) | 5.326 |
2 | 2v | 3.874 (2) | 0.02 | 3.440 (2) | 5.181 |
Symmetry codes: (iv) -x, -y+1, -z+2; (v) -x+1, -y+1, -z+2. Notes: Cg1 is the centroid of ring B (C9/N10/C11-C14), Cg2 is the centroid of ring A (C1-C4/C11/C12). Cg···Cg is the distance between ring centroids. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J. |
X | I | J | I···J | X···J | X-I···J |
S22 | O23 | 1vi | 3.255 (2) | 3.072 (2) | 146 |
Symmetry codes: (vi) -x+1, -y+1, -z+1. Notes: Cg1 is the centroid of ring B (C9/N10/C11-C14). |
Acknowledgements
This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/ 2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010.
References
Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641. Web of Science CSD CrossRef CAS Google Scholar
Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534. CrossRef CAS Web of Science Google Scholar
Huta, O. M., Patsaj, I. O., Konitz, A., Meszko, J. & Błażejowski, J. (2002). Acta Cryst. C58, o295–o297. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Krzymiński, K., Sikorski, A. & Błażejowski, J. (2007). Acta Cryst. E63, o3972–o3973. Web of Science CSD CrossRef IUCr Journals Google Scholar
Meszko, J., Sikorski, A., Huta, O. M., Konitz, A. & Błażejowski, J. (2002). Acta Cryst. C58, o669–o671. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005a). Acta Cryst. C61, o227–o230. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005b). Acta Cryst. E61, o2131–o2133. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sikorski, A., Niziołek, A., Krzymiński, K., Lis, T. & Błażejowski, J. (2008). Acta Cryst. E64, o372–o373. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005c). Acta Cryst. C61, o690–o694. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Białońska, A., Lis, T. & Błażejowski, J. (2006). Acta Cryst. E62, o822–o824. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (1991). Chem. Commun. pp. 313–314. Google Scholar
Storoniak, P., Krzymiński, K., Dokurno, P., Konitz, A. & Błażejowski, J. (2000). Aust. J. Chem. 53, 627–633. Web of Science CSD CrossRef CAS Google Scholar
Suzuki, H. & Tanaka, Y. (2001). J. Org. Chem. 66, 2227–2231. Web of Science CrossRef PubMed CAS Google Scholar
Tsuge, O., Nishinohara, M. & Sadano, K. (1965). Bull. Chem. Soc. Jpn, 38, 2037–2041. CrossRef CAS Web of Science Google Scholar
Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529-549. New York: Marcel Dekker. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acridinium cations substituted in positions 9 and 10 are susceptible to attack by OOH- or other oxidants at C9, which initiates conversion of these cations to electronically excited-light emitting 9-acridinones (Zomer & Jacquemijns, 2001). We investigated the above described chemiluminescence in the case of 9-(phenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonates, the several structures of which we recently determined (Sikorski et al., 2005a, b, c; Sikorski et al., 2006; Krzymiński et al., 2007; Sikorski et al., 2008). Chemiluminogenic features are also exhibited by the 9-cyano-10-methylacridinium and 9,10-dimethylacridinium cations respectively present as counterpart ions in hydrogen dinitrate and methylsulfate salts, the crystal structures of which were also refined (Huta et al., 2002; Meszko et al., 2002). We report herein the crystal structure of the title compound, which was selected for investigations as a potential chemiluminogen. The 9-ethyl-10-methylacridinium cation may also be interesting as a model compound in investigations of C-acidic features of organic molecules, since such properties are exhibited by the 9,10-dimethylacridinium cation (Suzuki & Tanaka, 2001).
In the molecule of the title compound (Fig. 1) the bond lengths and angles, characterizing the geometry of the acridine ring, are typical of acridine-based derivatives (Storoniak et al., 2000; Meszko et al., 2002). Rings A (C1-C4/C11/C12) and C (C5-C8/C13/C14) are planar and are oriented at a dihedral angle of 3.94 (2)°. Ring B (C9/N10/C11-C14) is not planar, having total puckering amplitude, QT, of 1.990 (5) and flattened-boat conformation [ϕ = 31.52 (5)° and θ = 21.87 (4)°] (Cremer & Pople, 1975).
In the crystal structure, weak intermolecular hydrogen bonds (Table 1) link the molecules. The central ring B and the aromatic ring A are involved in multidirectional π-π interactions (Table 2, Fig. 2). One of the O atoms of the anion is involved in weak S—O···π interactions directed toward the center of the acridine ring system (Table 3, Fig. 2). The C—H···O (Bianchi et al., 2004; Steiner, 1999) interactions are of the hydrogen-bond type. The S—O···π interactions (Dorn et al., 2005) should be of an attractive nature, such as is also exhibited by π-π interactions (Hunter & Sanders, 1990). The crystal structure is stabilized by a network of the aforementioned short-range interactions, as well as by long-range electrostatic interactions between ions.