organic compounds
6-Methylpyridin-3-amine
aCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: hpf@njut.edu.cn
In the molecule of the title compound, C6H8N2, the methyl C and amine N atoms are 0.021 (2) and 0.058 (2) Å from the pyridine ring plane. In the intermolecular N—H⋯N hydrogen bonds link the molecules.
Related literature
For a related structure, see: Sawanishi et al. (1987). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808040531/hk2583sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808040531/hk2583Isup2.hkl
For the preparation of the title compound, bromine (17.3 g) was added slowly to sodium hydroxide solution (303 ml, 5%), and then 3-pyridinecarboxamide (13 g) was added in about 20 min at 273-278 K. The mixture was heated in an oil bath at 343-353 K for 4 h. The product was extracted with CH2Cl2, washed with water and dried (yield; 8 g, 77.6%) (Sawanishi et al., 1987). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.
H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C6H8N2 | F(000) = 232 |
Mr = 108.14 | Dx = 1.175 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 8.4240 (17) Å | θ = 10–12° |
b = 7.0560 (14) Å | µ = 0.07 mm−1 |
c = 10.658 (2) Å | T = 294 K |
β = 105.23 (3)° | Block, colorless |
V = 611.3 (2) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 746 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.059 |
Graphite monochromator | θmax = 25.3°, θmin = 2.8° |
ω/2θ scans | h = 0→9 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→8 |
Tmin = 0.978, Tmax = 0.993 | l = −12→12 |
1183 measured reflections | 3 standard reflections every 120 min |
1106 independent reflections | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.057 | H-atom parameters constrained |
wR(F2) = 0.154 | w = 1/[σ2(Fo2) + (0.05P)2 + 0.5P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
1106 reflections | Δρmax = 0.19 e Å−3 |
73 parameters | Δρmin = −0.19 e Å−3 |
Primary atom site location: structure-invariant direct methods |
C6H8N2 | V = 611.3 (2) Å3 |
Mr = 108.14 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.4240 (17) Å | µ = 0.07 mm−1 |
b = 7.0560 (14) Å | T = 294 K |
c = 10.658 (2) Å | 0.30 × 0.20 × 0.10 mm |
β = 105.23 (3)° |
Enraf–Nonius CAD-4 diffractometer | 746 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.059 |
Tmin = 0.978, Tmax = 0.993 | 3 standard reflections every 120 min |
1183 measured reflections | intensity decay: 1% |
1106 independent reflections |
R[F2 > 2σ(F2)] = 0.057 | 73 parameters |
wR(F2) = 0.154 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.19 e Å−3 |
1106 reflections | Δρmin = −0.19 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.8161 (3) | 0.0759 (3) | 0.11504 (18) | 0.0480 (6) | |
N2 | 1.0351 (3) | 0.4188 (3) | 0.3558 (2) | 0.0595 (7) | |
H2A | 0.9692 | 0.5137 | 0.3361 | 0.071* | |
H2B | 1.1237 | 0.4285 | 0.4177 | 0.071* | |
C1 | 0.8752 (4) | −0.2454 (4) | 0.0569 (3) | 0.0616 (8) | |
H1B | 0.7734 | −0.2235 | −0.0076 | 0.092* | |
H1C | 0.8626 | −0.3507 | 0.1105 | 0.092* | |
H1D | 0.9602 | −0.2730 | 0.0148 | 0.092* | |
C2 | 0.9206 (4) | −0.0734 (4) | 0.1390 (2) | 0.0483 (7) | |
C3 | 0.8578 (3) | 0.2310 (4) | 0.1886 (2) | 0.0474 (7) | |
H3A | 0.7857 | 0.3333 | 0.1709 | 0.057* | |
C4 | 0.9987 (3) | 0.2519 (4) | 0.2884 (2) | 0.0478 (7) | |
C5 | 1.1033 (3) | 0.0962 (4) | 0.3130 (2) | 0.0503 (7) | |
H5A | 1.2009 | 0.1007 | 0.3788 | 0.060* | |
C6 | 1.0608 (4) | −0.0656 (4) | 0.2385 (2) | 0.0544 (7) | |
H6A | 1.1290 | −0.1713 | 0.2566 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0679 (13) | 0.0494 (13) | 0.0253 (10) | −0.0054 (11) | 0.0098 (9) | 0.0006 (10) |
N2 | 0.0703 (15) | 0.0579 (15) | 0.0413 (13) | 0.0013 (12) | −0.0013 (11) | −0.0182 (11) |
C1 | 0.096 (2) | 0.0527 (17) | 0.0366 (14) | −0.0081 (15) | 0.0191 (14) | −0.0067 (13) |
C2 | 0.0835 (18) | 0.0426 (14) | 0.0242 (12) | −0.0001 (13) | 0.0234 (12) | 0.0044 (11) |
C3 | 0.0707 (16) | 0.0446 (14) | 0.0302 (13) | 0.0036 (12) | 0.0190 (12) | 0.0017 (11) |
C4 | 0.0772 (17) | 0.0489 (15) | 0.0206 (11) | −0.0019 (13) | 0.0187 (11) | −0.0033 (11) |
C5 | 0.0622 (15) | 0.0554 (16) | 0.0301 (12) | 0.0096 (13) | 0.0062 (11) | 0.0047 (12) |
C6 | 0.0844 (19) | 0.0481 (15) | 0.0326 (13) | 0.0087 (14) | 0.0190 (13) | 0.0038 (12) |
N1—C3 | 1.338 (3) | C1—H1D | 0.9600 |
N1—C2 | 1.353 (3) | C2—C6 | 1.365 (4) |
N2—C4 | 1.371 (3) | C3—C4 | 1.378 (4) |
N2—H2A | 0.8600 | C3—H3A | 0.9300 |
N2—H2B | 0.8600 | C4—C5 | 1.390 (4) |
C1—C2 | 1.487 (3) | C5—C6 | 1.383 (4) |
C1—H1B | 0.9600 | C5—H5A | 0.9300 |
C1—H1C | 0.9600 | C6—H6A | 0.9300 |
C3—N1—C2 | 117.9 (2) | N1—C3—C4 | 125.4 (2) |
C4—N2—H2A | 120.0 | N1—C3—H3A | 117.3 |
C4—N2—H2B | 120.0 | C4—C3—H3A | 117.3 |
H2A—N2—H2B | 120.0 | N2—C4—C3 | 121.6 (2) |
C2—C1—H1B | 109.5 | N2—C4—C5 | 122.5 (2) |
C2—C1—H1C | 109.5 | C3—C4—C5 | 115.9 (2) |
H1B—C1—H1C | 109.5 | C6—C5—C4 | 119.2 (2) |
C2—C1—H1D | 109.5 | C6—C5—H5A | 120.4 |
H1B—C1—H1D | 109.5 | C4—C5—H5A | 120.4 |
H1C—C1—H1D | 109.5 | C2—C6—C5 | 121.3 (3) |
N1—C2—C6 | 120.2 (2) | C2—C6—H6A | 119.3 |
N1—C2—C1 | 118.1 (2) | C5—C6—H6A | 119.3 |
C6—C2—C1 | 121.7 (3) | ||
C3—N1—C2—C6 | 2.2 (3) | N2—C4—C5—C6 | −178.1 (2) |
C3—N1—C2—C1 | −179.6 (2) | C3—C4—C5—C6 | −0.3 (4) |
C2—N1—C3—C4 | −0.5 (4) | N1—C2—C6—C5 | −2.9 (4) |
N1—C3—C4—N2 | 177.4 (2) | C1—C2—C6—C5 | 178.9 (2) |
N1—C3—C4—C5 | −0.4 (4) | C4—C5—C6—C2 | 1.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···N1i | 0.86 | 2.29 | 3.131 (3) | 165 |
Symmetry code: (i) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C6H8N2 |
Mr | 108.14 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 294 |
a, b, c (Å) | 8.4240 (17), 7.0560 (14), 10.658 (2) |
β (°) | 105.23 (3) |
V (Å3) | 611.3 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.978, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1183, 1106, 746 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.154, 1.02 |
No. of reflections | 1106 |
No. of parameters | 73 |
No. of restraints | ? |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.19 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···N1i | 0.86 | 2.29 | 3.131 (3) | 165 |
Symmetry code: (i) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sawanishi, H., Tajima, K. & Tsuchiya, T. (1987). Chem. Pharm. Bull. 35, 4101–4109. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some derivatives of 3-pyridinecarboxylic acid are important chemical materials. We report herein the crystal structure of the title compound.
In the molecule of the title compound (Fig. 1) the bond lengths (Allen et al., 1987) and angles are within normal ranges. Atoms C1 and N2 are 0.021 (2) Å and 0.058 (2) Å away from the pyridine ring plane.
In the crystal structure, intermolecular N-H···N hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure.