organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(1,3-Benzodioxol-5-yl)pentan-1-one

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: hanyw@njut.edu.cn

(Received 27 November 2008; accepted 30 November 2008; online 20 December 2008)

In the mol­ecule of title compound, C12H14O3, the benzodioxole ring system is essentially planar. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into chains along the c axis, and ππ contacts between dioxole rings and between dioxole and benzene rings of the benzodioxole ring systems [centroid–centroid distances 3.702 (3) and 3.903 (3) Å] may further stabilize the structure. Two C—H⋯π inter­actions are also found.

Related literature

For general background, see: Koeppe et al. (1969[Koeppe, H., Ludwig, G. & Zeile, K. (1969). Boehringer Ingelheim GmbH, US Patent No. 3478050.]). For a related structure, see: May et al. (2000[May, P. J., Bradley, M., Harrowven, D. C. & Pallin, D. (2000). Tetrahedron Lett. 41, 1627-1630.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]);

[Scheme 1]

Experimental

Crystal data
  • C12H14O3

  • Mr = 206.23

  • Monoclinic, P 21 /n

  • a = 6.7940 (14) Å

  • b = 12.960 (3) Å

  • c = 12.244 (2) Å

  • β = 93.46 (3)°

  • V = 1076.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.991

  • 2133 measured reflections

  • 1961 independent reflections

  • 1079 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.171

  • S = 1.00

  • 1961 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.93 2.60 3.419 (4) 148
C3—H3ACg2ii 0.97 2.99 3.831 (3) 145
C12—H12ACg2iii 0.97 2.84 3.633 (3) 139
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x+1, -y+1, -z. Cg2 is the centroid of the C6–C11 ring.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON.

Supporting information


Comment top

The title compound is an important medicine intermediate used to synthesize methylenedioxypyrovalerone (Koeppe et al., 1969). As part of our studies in this area, we report herein its crystal structure.

In the molecule of title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (O2/O3/C9/C10/C12) and B (C6-C11) are, of course, planar, and the dihedral angle between them is A/B = 0.56 (3)°. So, they are also coplanar. Atoms O1, C5 and C4 are 0.011 (3), -0.049 (3) and -0.119 (3) Å away from the plane of the benzodioxole ring system.

In the crystal structure, weak intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into chains along the c axis (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contacts between the dioxole rings and the dioxole and benzene rings of the benzodioxole ring systems, Cg1—Cg1i and Cg1—Cg2i [symmetry code: (i) 1 - x, 1 - y, -z where Cg1 and Cg2 are centroids of the rings A (O2/O3/C9/C10/C12) and B (C6-C11), respectively] may further stabilize the structure, with centroid-centroid distances of 3.702 (3) Å and 3.903 (3) Å. There also exist two C–H···π interactions (Table 1).

Related literature top

For general background, see: Koeppe et al. (1969). For a related structure, see: May et al. (2000). For bond-length data, see: Allen et al. (1987);

Experimental top

The title compound was synthesized according to a literature method (May et al., 2000). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (0.2 g) in methanol (25 ml), and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
1-(1,3-Benzodioxol-5-yl)pentan-1-one top
Crystal data top
C12H14O3F(000) = 440
Mr = 206.23Dx = 1.273 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 6.7940 (14) Åθ = 9–12°
b = 12.960 (3) ŵ = 0.09 mm1
c = 12.244 (2) ÅT = 298 K
β = 93.46 (3)°Needle, colorless
V = 1076.1 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1079 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.973, Tmax = 0.991l = 1414
2133 measured reflections3 standard reflections every 120 min
1961 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.06P)2 + 0.6P]
where P = (Fo2 + 2Fc2)/3
1961 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C12H14O3V = 1076.1 (4) Å3
Mr = 206.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7940 (14) ŵ = 0.09 mm1
b = 12.960 (3) ÅT = 298 K
c = 12.244 (2) Å0.30 × 0.20 × 0.10 mm
β = 93.46 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1079 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.031
Tmin = 0.973, Tmax = 0.9913 standard reflections every 120 min
2133 measured reflections intensity decay: 1%
1961 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
1961 reflectionsΔρmin = 0.20 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0098 (4)0.8069 (2)1.06817 (19)0.0789 (9)
O20.7749 (3)0.5827 (2)0.94774 (18)0.0650 (7)
O30.6590 (4)0.6096 (2)1.11889 (18)0.0666 (8)
C10.4973 (6)1.0228 (4)0.8325 (3)0.0911 (14)
H1A0.56081.04660.76500.137*
H1B0.44671.08090.87410.137*
H1C0.59090.98640.87380.137*
C20.3317 (5)0.9524 (3)0.8088 (3)0.0678 (11)
H2A0.24160.98940.76440.081*
H2B0.38490.89510.76550.081*
C30.2171 (5)0.9099 (3)0.9067 (3)0.0589 (9)
H3A0.30540.86990.94950.071*
H3B0.16800.96700.95190.071*
C40.0454 (5)0.8428 (3)0.8797 (3)0.0567 (9)
H4A0.09470.78660.83330.068*
H4B0.04350.88330.83790.068*
C50.0698 (5)0.7978 (3)0.9768 (3)0.0519 (9)
C60.2532 (5)0.7393 (2)0.9607 (2)0.0458 (8)
C70.3230 (5)0.7220 (3)0.8582 (2)0.0507 (9)
H7A0.25190.74720.79660.061*
C80.4974 (5)0.6678 (3)0.8456 (3)0.0566 (9)
H8A0.54210.65460.77660.068*
C90.5996 (5)0.6350 (3)0.9378 (3)0.0501 (8)
C100.5302 (5)0.6509 (3)1.0409 (2)0.0503 (8)
C110.3604 (5)0.7021 (3)1.0545 (2)0.0514 (9)
H11A0.31550.71251.12390.062*
C120.8125 (5)0.5645 (3)1.0614 (3)0.0627 (10)
H12A0.81830.49081.07540.075*
H12B0.93820.59451.08600.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0840 (19)0.098 (2)0.0557 (15)0.0266 (17)0.0117 (13)0.0023 (14)
O20.0596 (16)0.0744 (18)0.0610 (15)0.0185 (14)0.0035 (12)0.0015 (13)
O30.0670 (17)0.0770 (18)0.0552 (14)0.0171 (14)0.0010 (12)0.0033 (13)
C10.101 (3)0.085 (3)0.085 (3)0.032 (3)0.015 (3)0.012 (2)
C20.074 (3)0.064 (2)0.065 (2)0.014 (2)0.0040 (19)0.0096 (19)
C30.063 (2)0.046 (2)0.067 (2)0.0010 (18)0.0010 (18)0.0020 (18)
C40.055 (2)0.058 (2)0.0580 (19)0.0002 (18)0.0049 (16)0.0037 (18)
C50.059 (2)0.048 (2)0.0497 (18)0.0008 (17)0.0083 (16)0.0009 (16)
C60.049 (2)0.0390 (18)0.0498 (17)0.0036 (16)0.0070 (15)0.0020 (14)
C70.055 (2)0.050 (2)0.0460 (17)0.0029 (18)0.0016 (15)0.0032 (15)
C80.063 (2)0.060 (2)0.0479 (18)0.0032 (19)0.0119 (17)0.0051 (16)
C90.054 (2)0.044 (2)0.0521 (18)0.0044 (17)0.0040 (16)0.0030 (15)
C100.059 (2)0.044 (2)0.0469 (17)0.0014 (17)0.0016 (16)0.0008 (15)
C110.057 (2)0.053 (2)0.0443 (17)0.0006 (18)0.0054 (16)0.0015 (15)
C120.062 (2)0.061 (2)0.064 (2)0.006 (2)0.0000 (18)0.0036 (19)
Geometric parameters (Å, º) top
O1—C51.220 (4)C4—C51.501 (4)
O2—C91.370 (4)C4—H4A0.9700
O2—C121.419 (4)C4—H4B0.9700
O3—C101.365 (4)C5—C61.482 (4)
O3—C121.419 (4)C6—C71.387 (4)
C1—C21.491 (5)C6—C111.407 (4)
C1—H1A0.9600C7—C81.394 (5)
C1—H1B0.9600C7—H7A0.9300
C1—H1C0.9600C8—C91.358 (5)
C2—C31.495 (4)C8—H8A0.9300
C2—H2A0.9700C9—C101.389 (4)
C2—H2B0.9700C10—C111.349 (4)
C3—C41.508 (4)C11—H11A0.9300
C3—H3A0.9700C12—H12A0.9700
C3—H3B0.9700C12—H12B0.9700
C9—O2—C12105.9 (3)O1—C5—C4120.1 (3)
C10—O3—C12105.9 (2)C6—C5—C4119.8 (3)
C2—C1—H1A109.5C7—C6—C11119.6 (3)
C2—C1—H1B109.5C7—C6—C5122.6 (3)
H1A—C1—H1B109.5C11—C6—C5117.8 (3)
C2—C1—H1C109.5C6—C7—C8121.4 (3)
H1A—C1—H1C109.5C6—C7—H7A119.3
H1B—C1—H1C109.5C8—C7—H7A119.3
C1—C2—C3115.6 (3)C9—C8—C7117.4 (3)
C1—C2—H2A108.4C9—C8—H8A121.3
C3—C2—H2A108.4C7—C8—H8A121.3
C1—C2—H2B108.4C8—C9—O2128.8 (3)
C3—C2—H2B108.4C8—C9—C10121.7 (3)
H2A—C2—H2B107.5O2—C9—C10109.5 (3)
C2—C3—C4114.1 (3)C11—C10—O3128.6 (3)
C2—C3—H3A108.7C11—C10—C9121.6 (3)
C4—C3—H3A108.7O3—C10—C9109.8 (3)
C2—C3—H3B108.7C10—C11—C6118.2 (3)
C4—C3—H3B108.7C10—C11—H11A120.9
H3A—C3—H3B107.6C6—C11—H11A120.9
C5—C4—C3115.1 (3)O3—C12—O2108.9 (3)
C5—C4—H4A108.5O3—C12—H12A109.9
C3—C4—H4A108.5O2—C12—H12A109.9
C5—C4—H4B108.5O3—C12—H12B109.9
C3—C4—H4B108.5O2—C12—H12B109.9
H4A—C4—H4B107.5H12A—C12—H12B108.3
O1—C5—C6120.1 (3)
C1—C2—C3—C4177.5 (3)C12—O2—C9—C100.9 (4)
C2—C3—C4—C5179.0 (3)C12—O3—C10—C11180.0 (4)
C3—C4—C5—O18.2 (5)C12—O3—C10—C91.2 (4)
C3—C4—C5—C6173.9 (3)C8—C9—C10—C111.8 (5)
O1—C5—C6—C7176.7 (3)O2—C9—C10—C11179.1 (3)
C4—C5—C6—C71.3 (5)C8—C9—C10—O3179.3 (3)
O1—C5—C6—C114.6 (5)O2—C9—C10—O30.2 (4)
C4—C5—C6—C11177.5 (3)O3—C10—C11—C6179.0 (3)
C11—C6—C7—C80.4 (5)C9—C10—C11—C60.2 (5)
C5—C6—C7—C8179.1 (3)C7—C6—C11—C100.4 (5)
C6—C7—C8—C91.8 (5)C5—C6—C11—C10178.4 (3)
C7—C8—C9—O2178.6 (3)C10—O3—C12—O21.8 (4)
C7—C8—C9—C102.5 (5)C9—O2—C12—O31.7 (4)
C12—O2—C9—C8178.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.932.603.419 (4)148
C3—H3A···Cg2ii0.972.993.831 (3)145
C12—H12A···Cg2iii0.972.843.633 (3)139
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H14O3
Mr206.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.7940 (14), 12.960 (3), 12.244 (2)
β (°) 93.46 (3)
V3)1076.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2133, 1961, 1079
Rint0.031
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.171, 1.00
No. of reflections1961
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.932.603.419 (4)148.00
C3—H3A···Cg2ii0.972.993.831 (3)145.08
C12—H12A···Cg2iii0.972.843.633 (3)139.26
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1, y, z; (iii) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Science Fundamental Research Fund of the Education Department, Jiangsu Province (grant No. 06KJB150024). The authors thank the Center of Testing and Analysis, Nanjing University, for data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKoeppe, H., Ludwig, G. & Zeile, K. (1969). Boehringer Ingelheim GmbH, US Patent No. 3478050.  Google Scholar
First citationMay, P. J., Bradley, M., Harrowven, D. C. & Pallin, D. (2000). Tetrahedron Lett. 41, 1627–1630.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds