metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(di-2-pyridylamine)mercury(II)

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and bDepartment of Chemistry, University of Zabol, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 28 November 2008; accepted 30 November 2008; online 6 December 2008)

In the mol­ecule of the title compound, [HgCl2(C10H9N3)], the HgII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from the chelating di-2-pyridylamine ligand and by two Cl atoms. In the crystal structure, inter­molecular N—H⋯Cl hydrogen bonds link the mol­ecules into centrosymmetric dimers. There is a ππ contact between the pyridine rings [centroid–centroid distance = 3.896 (5) Å].

Related literature

For related literature, see: Ahmadi et al. (2008[Ahmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407.]); Kalateh, Ebadi et al. (2008[Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397-m1398.]); Kalateh, Norouzi et al. (2008[Kalateh, K., Norouzi, A., Ebadi, A., Ahmadi, R. & Amani, V. (2008). Acta Cryst. E64, m1583-m1584.]); Khavasi et al. (2008[Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848-1854.]); Tadayon Pour et al. (2008[Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.]); Yousefi, Rashidi Vahid et al. (2008[Yousefi, M., Rashidi Vahid, R., Amani, V., Arab Chamjangali, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339-m1340.]); Yousefi, Tadayon Pour et al. (2008[Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.]). For related structures, see: Chen et al. (2006[Chen, W. T., Wang, M. S., Liu, X., Guo, G. C. & Huang, J. S. (2006). Cryst. Growth Des. 6, 2289-2300.]); Liu et al. (2004[Liu, Q. D., Wang, R. & Wang, S. (2004). Dalton Trans. pp. 2073-2079.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [HgCl2(C10H9N3)]

  • Mr = 442.69

  • Triclinic, [P \overline 1]

  • a = 8.0268 (12) Å

  • b = 8.6127 (11) Å

  • c = 9.6118 (14) Å

  • α = 110.606 (11)°

  • β = 98.958 (12)°

  • γ = 96.862 (11)°

  • V = 603.38 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 13.17 mm−1

  • T = 298 (2) K

  • 0.24 × 0.21 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.061, Tmax = 0.142

  • 7105 measured reflections

  • 3214 independent reflections

  • 2806 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.126

  • S = 1.05

  • 3214 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.43 e Å−3

  • Δρmin = −2.08 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cl1—Hg1 2.3875 (19)
Cl2—Hg1 2.4579 (19)
N1—Hg1 2.369 (6)
N3—Hg1 2.290 (6)
N1—Hg1—Cl1 112.30 (15)
N1—Hg1—Cl2 94.92 (15)
N3—Hg1—Cl1 112.21 (15)
N3—Hg1—Cl2 123.92 (14)
N3—Hg1—N1 82.4 (2)
Cl1—Hg1—Cl2 120.14 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯Cl2i 0.95 (16) 2.41 (16) 3.345 (6) 169 (13)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we reported the synthes and crystal structures of [Hg(NH(py)2)Br2], (II), (Kalateh, Norouzi et al., 2008), [Hg(4,4'-dmbpy)I2], (III), (Yousefi, Tadayon Pour et al., 2008), [Hg(5,5'-dmbpy)I2], (IV), (Tadayon Pour et al., 2008), [Hg(dmphen)I2], (V), (Yousefi, Rashidi Vahid et al., 2008), {[HgCl(dm4bt)]2(µ-Cl)2}, (VI), (Khavasi et al., 2008), [Hg(6-mbpy)Cl2], (VII), (Ahmadi et al., 2008) and [{HgBr(4,4'-dmbpy)}2(µ-Br)2], (VIII), (Kalateh, Ebadi et al., 2008) [where NH(py)2 is di-2-pyridylamine, 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, 6-mbpy is 6-methyl-2,2'-bipyridine, dmphen is 4,7-diphenyl- 1,10-phenanthroline and dm4bt is 2,2'-dimethyl-4,4'-bithiazole].

There are several HgII complexes, with formula, [Hg(N—N)Cl2], such as [Hg(bipy)Cl2], (IX), and [Hg(bipy)Cl2][HgCl2], (X), (Chen et al., 2006) and [Hg(dpdmbip) Cl2].CH2Cl2, (XI), (Liu et al., 2004) [where bipy is 2,2'-bipyridine and dpdmbip is 4,4'-diphenyl-6,6'-dimethyl-2,2'-bipyrimidine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound, (Fig. 1), the HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from di-2-pyridylamine and two Cl atoms. The Hg-Cl and Hg-N bond lengths (Allen et al., 1987) and angles (Table 1) are within normal ranges.

In the crystal structure, intermolecular N-H···Cl hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers, in which they may be effective in the stabilization of the crystal structure (Fig. 2). The π-π contact between the pyridine rings, Cg2···Cg3i [symmetry code: (i) -x, 1 - y, 1 - z, where Cg2 and Cg3 are centroids of the rings A (N1/C1-C5) and B (N3/C6-C10), respectively] may further stabilize the structure, with centroid-centroid distance of 3.896 (5)%A.

Related literature top

For related literature, see: Ahmadi et al. (2008); Kalateh, Ebadi et al. (2008); Kalateh, Norouzi et al. (2008); Khavasi et al. (2008); Tadayon Pour et al. (2008); Yousefi, Rashidi Vahid et al. (2008); Yousefi, Tadayon Pour et al. (2008). For related structures, see: Chen et al. (2006); Liu et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, (I), a solution of di-2-pyridylamine (0.25 g, 1.43 mmol) in methanol (20 ml) was added to a solution of HgCl2 (0.39 g, 1.43 mmol) in acetonitrile (20 ml) and the resulting colorless solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless block crystals of the title compound were isolated (yield; 0.47 g, 74.3%).

Refinement top

H2B atom (for NH) was located in difference synthesis and refined isotropically [N-H = 0.95 (14) Å and Uiso(H) = 0.10 (4) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Dichlorido(di-2-pyridylamine)mercury(II) top
Crystal data top
[HgCl2(C10H9N3)]Z = 2
Mr = 442.69F(000) = 408
Triclinic, P1Dx = 2.437 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0268 (12) ÅCell parameters from 1652 reflections
b = 8.6127 (11) Åθ = 2.6–29.2°
c = 9.6118 (14) ŵ = 13.17 mm1
α = 110.606 (11)°T = 298 K
β = 98.958 (12)°Block, colorless
γ = 96.862 (11)°0.24 × 0.21 × 0.15 mm
V = 603.38 (15) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3214 independent reflections
Radiation source: fine-focus sealed tube2806 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ϕ and ω scansθmax = 29.2°, θmin = 2.6°
Absorption correction: multi scan
(SADABS; Sheldrick, 1998)
h = 1010
Tmin = 0.061, Tmax = 0.142k = 1111
7105 measured reflectionsl = 1312
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.075P)2 + 0.8992P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.026
3214 reflectionsΔρmax = 2.43 e Å3
150 parametersΔρmin = 2.08 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.048 (3)
Crystal data top
[HgCl2(C10H9N3)]γ = 96.862 (11)°
Mr = 442.69V = 603.38 (15) Å3
Triclinic, P1Z = 2
a = 8.0268 (12) ÅMo Kα radiation
b = 8.6127 (11) ŵ = 13.17 mm1
c = 9.6118 (14) ÅT = 298 K
α = 110.606 (11)°0.24 × 0.21 × 0.15 mm
β = 98.958 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3214 independent reflections
Absorption correction: multi scan
(SADABS; Sheldrick, 1998)
2806 reflections with I > 2σ(I)
Tmin = 0.061, Tmax = 0.142Rint = 0.069
7105 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 2.43 e Å3
3214 reflectionsΔρmin = 2.08 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.21151 (4)0.24646 (4)0.63832 (4)0.06055 (18)
Cl10.4456 (3)0.1830 (3)0.7818 (3)0.0683 (5)
Cl20.0856 (2)0.1450 (2)0.6448 (2)0.0553 (4)
N10.1944 (8)0.5364 (8)0.7382 (7)0.0497 (12)
N20.2047 (8)0.5833 (7)0.5110 (6)0.0459 (11)
N30.2876 (7)0.3143 (7)0.4439 (7)0.0447 (11)
C10.1758 (12)0.5982 (12)0.8836 (9)0.0636 (19)
H10.18620.52940.93930.076*
C20.1428 (12)0.7553 (13)0.9537 (9)0.069 (2)
H20.12850.79201.05370.083*
H2B0.186 (18)0.662 (18)0.464 (16)0.10 (4)*
C30.1312 (11)0.8591 (11)0.8713 (9)0.0624 (18)
H30.11150.96830.91570.075*
C40.1493 (9)0.7975 (9)0.7231 (8)0.0514 (14)
H40.13790.86350.66490.062*
C50.1848 (7)0.6352 (7)0.6597 (7)0.0398 (11)
C60.2674 (7)0.4531 (7)0.4151 (7)0.0395 (10)
C70.3045 (9)0.4711 (10)0.2836 (7)0.0499 (13)
H70.28490.56560.26270.060*
C80.3715 (12)0.3449 (13)0.1842 (10)0.067 (2)
H80.40060.35590.09770.080*
C90.3935 (9)0.2066 (10)0.2156 (9)0.0587 (18)
H90.43650.12080.14980.070*
C100.3524 (9)0.1931 (9)0.3444 (10)0.0556 (16)
H100.36940.09760.36480.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0618 (2)0.0660 (2)0.0781 (3)0.02555 (14)0.02487 (14)0.04774 (18)
Cl10.0653 (11)0.0710 (11)0.0816 (13)0.0210 (9)0.0091 (9)0.0445 (10)
Cl20.0623 (9)0.0551 (8)0.0628 (9)0.0170 (7)0.0277 (7)0.0314 (7)
N10.051 (3)0.058 (3)0.050 (3)0.019 (2)0.014 (2)0.027 (2)
N20.059 (3)0.043 (2)0.045 (3)0.016 (2)0.015 (2)0.024 (2)
N30.043 (2)0.041 (2)0.056 (3)0.006 (2)0.013 (2)0.023 (2)
C10.072 (5)0.078 (5)0.051 (4)0.020 (4)0.017 (3)0.033 (4)
C20.071 (5)0.084 (6)0.047 (4)0.019 (4)0.012 (3)0.017 (4)
C30.066 (4)0.061 (4)0.052 (4)0.013 (4)0.015 (3)0.009 (3)
C40.053 (3)0.045 (3)0.052 (3)0.007 (3)0.008 (3)0.014 (3)
C50.035 (2)0.043 (3)0.043 (3)0.006 (2)0.007 (2)0.019 (2)
C60.037 (2)0.040 (3)0.042 (3)0.005 (2)0.008 (2)0.017 (2)
C70.052 (3)0.060 (4)0.046 (3)0.017 (3)0.015 (2)0.026 (3)
C80.064 (4)0.088 (6)0.057 (4)0.013 (4)0.025 (3)0.032 (4)
C90.045 (3)0.054 (4)0.063 (4)0.008 (3)0.018 (3)0.003 (3)
C100.049 (3)0.047 (3)0.072 (4)0.011 (3)0.020 (3)0.021 (3)
Geometric parameters (Å, º) top
Cl1—Hg12.3875 (19)C5—N11.323 (8)
Cl2—Hg12.4579 (19)C5—N21.381 (8)
N1—Hg12.369 (6)C6—N31.341 (8)
N2—H2B0.95 (14)C6—N21.383 (8)
N3—Hg12.290 (6)C6—C71.398 (9)
C1—N11.349 (10)C7—C81.397 (11)
C1—C21.363 (13)C7—H70.9300
C1—H10.9300C8—C91.352 (14)
C2—C31.390 (14)C8—H80.9300
C2—H20.9300C9—C101.369 (12)
C3—C41.372 (11)C9—H90.9300
C3—H30.9300C10—N31.362 (9)
C4—C51.399 (9)C10—H100.9300
C4—H40.9300
N1—Hg1—Cl1112.30 (15)N2—C6—C7116.6 (5)
N1—Hg1—Cl294.92 (15)C8—C7—C6119.0 (7)
N3—Hg1—Cl1112.21 (15)C8—C7—H7120.5
N3—Hg1—Cl2123.92 (14)C6—C7—H7120.5
N3—Hg1—N182.4 (2)C9—C8—C7119.0 (7)
Cl1—Hg1—Cl2120.14 (7)C9—C8—H8120.6
N1—C1—C2123.8 (8)C7—C8—H8120.4
N1—C1—H1118.1C8—C9—C10119.9 (7)
C2—C1—H1118.1C8—C9—H9120.0
C1—C2—C3117.9 (8)C10—C9—H9120.1
C1—C2—H2121.0N3—C10—C9122.5 (7)
C3—C2—H2121.0N3—C10—H10118.7
C4—C3—C2118.7 (8)C9—C10—H10118.8
C4—C3—H3120.6C5—N1—C1118.4 (7)
C2—C3—H3120.7C5—N1—Hg1125.5 (4)
C3—C4—C5119.9 (7)C1—N1—Hg1115.7 (5)
C3—C4—H4120.1C6—N2—C5136.0 (5)
C5—C4—H4120.0C6—N2—H2B109 (8)
N1—C5—N2122.3 (6)C5—N2—H2B115 (8)
N1—C5—C4121.1 (6)C6—N3—C10118.2 (6)
N2—C5—C4116.6 (6)C6—N3—Hg1127.3 (4)
N3—C6—N2122.1 (6)C10—N3—Hg1114.4 (5)
N3—C6—C7121.3 (6)
C1—N1—Hg1—N3169.7 (6)C6—C7—C8—C92.0 (12)
C5—N1—Hg1—N317.3 (5)C7—C8—C9—C100.9 (13)
C1—N1—Hg1—Cl158.7 (6)C8—C9—C10—N30.6 (12)
C1—N1—Hg1—Cl266.7 (6)N2—C5—N1—C1179.1 (7)
C5—N1—Hg1—Cl1128.2 (5)C4—C5—N1—C12.6 (10)
C5—N1—Hg1—Cl2106.3 (5)N2—C5—N1—Hg18.1 (9)
C6—N3—Hg1—N115.5 (5)C4—C5—N1—Hg1170.3 (5)
C10—N3—Hg1—N1168.0 (5)C2—C1—N1—C51.9 (13)
C6—N3—Hg1—Cl1126.5 (5)C2—C1—N1—Hg1171.6 (7)
C10—N3—Hg1—Cl157.0 (5)N3—C6—N2—C517.7 (11)
C6—N3—Hg1—Cl275.3 (5)C7—C6—N2—C5164.1 (7)
C10—N3—Hg1—Cl2101.2 (5)N1—C5—N2—C615.3 (11)
N1—C1—C2—C31.4 (15)C4—C5—N2—C6166.3 (7)
C1—C2—C3—C41.5 (14)N2—C6—N3—C10179.2 (6)
C2—C3—C4—C52.3 (12)C7—C6—N3—C102.7 (9)
C3—C4—C5—N12.8 (10)N2—C6—N3—Hg14.5 (8)
C3—C4—C5—N2178.7 (7)C7—C6—N3—Hg1173.7 (5)
N3—C6—C7—C83.0 (10)C9—C10—N3—C61.5 (10)
N2—C6—C7—C8178.7 (7)C9—C10—N3—Hg1175.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Cl2i0.95 (16)2.41 (16)3.345 (6)169 (13)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[HgCl2(C10H9N3)]
Mr442.69
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.0268 (12), 8.6127 (11), 9.6118 (14)
α, β, γ (°)110.606 (11), 98.958 (12), 96.862 (11)
V3)603.38 (15)
Z2
Radiation typeMo Kα
µ (mm1)13.17
Crystal size (mm)0.24 × 0.21 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.061, 0.142
No. of measured, independent and
observed [I > 2σ(I)] reflections
7105, 3214, 2806
Rint0.069
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.126, 1.05
No. of reflections3214
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.43, 2.08

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cl1—Hg12.3875 (19)N1—Hg12.369 (6)
Cl2—Hg12.4579 (19)N3—Hg12.290 (6)
N1—Hg1—Cl1112.30 (15)N3—Hg1—Cl2123.92 (14)
N1—Hg1—Cl294.92 (15)N3—Hg1—N182.4 (2)
N3—Hg1—Cl1112.21 (15)Cl1—Hg1—Cl2120.14 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Cl2i0.95 (16)2.41 (16)3.345 (6)169 (13)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAhmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W. T., Wang, M. S., Liu, X., Guo, G. C. & Huang, J. S. (2006). Cryst. Growth Des. 6, 2289–2300.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalateh, K., Norouzi, A., Ebadi, A., Ahmadi, R. & Amani, V. (2008). Acta Cryst. E64, m1583–m1584.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Q. D., Wang, R. & Wang, S. (2004). Dalton Trans. pp. 2073–2079.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Rashidi Vahid, R., Amani, V., Arab Chamjangali, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339–m1340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds