organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o42-o43

(1R,3S)-1,1′-(1,3-Di­hydro-2-benzo­furan-1,3-diyl)bis­(1,3-di­methyl­urea)

aInstitute of Chemistry, University of the Punjab, Lahore-54590, Pakistan, bDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 29 November 2008; accepted 3 December 2008; online 6 December 2008)

In the mol­ecule of the title compound, C14H20N4O3, the five-membered ring adopts an envelope conformation with the O atom displaced by 0.207 (3) Å from the plane of the other ring atoms. Intra­molecular C—H⋯O hydrogen bonds result in the formation of three five-membered rings having envelope conformations. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules, forming R22(20) ring motifs, which produce two-dimensional polymeric sheets extending along the b axis. There are also two C—H⋯π inter­actions. The H atoms of one of the methyl groups are disordered over two positions and were refined with occupancies of 0.50.

Related literature

For general background, see: Veeraraghavan et al. (1996[Veeraraghavan, R. P., Chen, G. M. & Brown, H. C. (1996). Tetrahedron Lett. pp. 2205-2208.]); Lin et al. (2005[Lin, X., Huang, Y., Fang, M., Wang, J., Zheng, Z. & Su, W. (2005). FEMS Microbiol. Lett. pp. 53-58.]); Roy & Sarkar (2005[Roy, H. N. & Sarkar, M. S. (2005). Synth. Commun. 35, 2177-2181.]); Harper et al. (2003[Harper, J. K., Arif, A. M., Ford, E. J., Strobel, G. A., Porco, J. A. Jr, Tomer, D. P., ONaill, K. L., Heider, E. M. & Grant, D. M. (2003). Tetrahedron, pp. 2471-2476.]); Tsi & Tan (1997[Tsi, D. & Tan, B. K. H. (1997). Phytother. Res. 11, 576-582.]). For related structures, see: Maliha et al. (2007[Maliha, B., Hussain, I., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4728.], 2009[Maliha, B., Tariq, M. I., Tahir, M. N., Hussain, I. & Ali, M. (2009). Acta Cryst. E65, o41.]); Maliha, Hussain et al. (2008[Maliha, B., Hussain, I., Tahir, M. N., Tariq, M. I. & Siddiqui, H. L. (2008). Acta Cryst. E64, o626.]); Maliha, Tariq et al. (2008[Maliha, B., Tariq, M. I., Tahir, M. N., Hussain, I. & Siddiqui, H. L. (2008). Acta Cryst. E64, o786.]). For ring-motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).For bond lengths and angles in 3-[(2-hydr­oxy-5-nitro­phen­yl)amino]-2-benzofuran-1(3H)-one monohydrate, see: Odabaşoğlu & Büyükgüngör (2006[Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o3042-o3043.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20N4O3

  • Mr = 292.34

  • Orthorhombic, P b c a

  • a = 14.6322 (6) Å

  • b = 9.1014 (3) Å

  • c = 21.2307 (9) Å

  • V = 2827.37 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.30 × 0.10 × 0.06 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.989

  • 19271 measured reflections

  • 3257 independent reflections

  • 2741 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.150

  • S = 1.02

  • 3257 reflections

  • 206 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O3i 0.806 (19) 2.062 (19) 2.8229 (16) 157.4 (19)
N4—H4N⋯O2i 0.858 (18) 2.006 (18) 2.8322 (15) 161.2 (18)
C1—H1⋯O3 0.987 (17) 2.263 (17) 2.7205 (16) 107.0 (12)
C8—H8⋯O2 1.003 (17) 2.239 (17) 2.7505 (17) 110.1 (12)
C11—H11A⋯O2 0.96 2.39 2.7730 (18) 103.0
C9—H9B⋯CgA 0.96 2.6600 3.0207 (14) 103.0
C12—H12B⋯CgA 0.96 2.7200 3.0046 (15) 98.0
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. CgA is the centroid of the O1/C1/C2/C7/C8 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Isobenzofurans exhibit anticonvulsant, antitumour and antiasthamatic properties (Veeraraghavan et al., 1996). These compounds have several biological activities, such as antioxidant, antimycotic, cytotoxic, antimicrobial, herbicidal, analgesic and pesticidal activities (Lin et al., 2005, Roy & Sarkar, 2005, Harper et al., 2003). These are known to exhibit hypotensive and vasorelaxant properties (Tsi & Tan, 1997). We report herein the synthesis and crystal structure of the title compound. This study is in countinuation to the formation of derivatives of O-phthaldehyde with different ureas (Maliha et al., 2007; Maliha, Hussain et al., 2008; Maliha, Tariq et al., 2008).

The molecule of the title compound is essentially symmetric about the mirror plane passing through the O1 atom of the 2-benzofuran ring system as far as the chemical structure is concerned. But, the intramolecular C-H···O hydrogen bonds (Table 1) disturb this symmetry. Due to this reason, there exist R and S-configurations at C1 and C8 atoms, respectively. The bond legths and angles in the 2-benzofuran ring system are in accordance with the corresponding values in 3-[(2-Hydroxy-5-nitrophenyl)amino]-2-benzofuran-1(3H)-one monohydrate (Odabaşoĝlu & Büyükgüngör, 2006). Ring B (C2-C7) is, of course, planar, while the five-membered ring A (O1/C1/C2/C7/C8) adopts envelope conformation with O1 atom displaced by -0.207 (3) Å from the plane of the other ring atoms. The intramolecular C-H···O hydrogen bonds (Table 1) result in the formation of three five-membered rings: C (O3/N3/C1/C13/H1), D (O2/N1/C8/C10/H8) and E (O2/N2/C10/C11/H11A), having envelope conformations with N3, N1 and H11A atoms displaced by 0.191 (3), -0.155 (3) and -0.265 (3) Å from the planes of the other rings atoms, respectively.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules to form R22(20) ring motifs (Bernstein et al., 1995), which are joint in such a fashion that the 2-benzofuran rings are in cis and trans positions. They produce two dimensional polymeric sheets extending along the b axis (Fig 2). There also exist two C–H···π interactions (Table 1).

Related literature top

For general background, see: Veeraraghavan et al. (1996); Lin et al. (2005); Roy & Sarkar (2005); Harper et al. (2003); Tsi & Tan (1997). For related structures, see: Maliha et al. (2007, 2009); Maliha, Hussain et al. (2008); Maliha, Tariq et al. (2008). For ring-motifs, see: Bernstein et al. (1995). CgA is the centroid of the O1/C1/C2/C7/C8 ring. For bond lengths and angles in 3-[(2-hydroxy-5-nitrophenyl)amino]-2-benzofuran-1(3H)-one monohydrate, see: Odabaşoğlu & Büyükgüngör (2006).

Experimental top

For the preparation of the title compound, O-phthaldehyde (200 mmol), N,N-dimethylurea (200 mmol) and a few drops of HCl were refluxed in ethanol. Colorless precipitate obtained was crystallized in the solution of methanol:acetone (9:1) by slow evaporation at room temperature.

Refinement top

The hydrogen atoms of the C11 methyl group were disordered over two positions. During the refinement process the disordered atoms were refined with occupancies of 0.50. H1, H8 (for CH) and H2N, H4N (for NH) atoms were located in difference syntheses and refined [C-H = 0.987 (17) and 1.003 (17) Å, Uiso(H) = 1.2Ueq(C); N-H = 0.806 (19) and 0.858 (18) Å, Uiso(H) = 1.5Ueq(N). The remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
(1R,3S)-1,1'-(1,3-Dihydro-2-benzofuran-1,3-diyl)bis(1,3- dimethylurea) top
Crystal data top
C14H20N4O3F(000) = 1008
Mr = 292.34Dx = 1.374 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2741 reflections
a = 14.6322 (6) Åθ = 1.9–27.6°
b = 9.1014 (3) ŵ = 0.10 mm1
c = 21.2307 (9) ÅT = 296 K
V = 2827.37 (19) Å3Needle, colorless
Z = 80.30 × 0.10 × 0.06 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3257 independent reflections
Radiation source: fine-focus sealed tube2741 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 7.50 pixels mm-1θmax = 27.6°, θmin = 1.9°
ω scansh = 1819
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1111
Tmin = 0.982, Tmax = 0.989l = 2727
19271 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.1147P)2 + 0.2587P]
where P = (Fo2 + 2Fc2)/3
3257 reflections(Δ/σ)max = 0.001
206 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C14H20N4O3V = 2827.37 (19) Å3
Mr = 292.34Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.6322 (6) ŵ = 0.10 mm1
b = 9.1014 (3) ÅT = 296 K
c = 21.2307 (9) Å0.30 × 0.10 × 0.06 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3257 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2741 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.989Rint = 0.033
19271 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.32 e Å3
3257 reflectionsΔρmin = 0.30 e Å3
206 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.41467 (6)0.45600 (11)0.23235 (4)0.0174 (3)
O20.34799 (7)0.54659 (10)0.39413 (5)0.0198 (3)
O30.51470 (7)0.55115 (10)0.08040 (4)0.0182 (3)
N10.34567 (8)0.35646 (12)0.32370 (5)0.0172 (3)
N20.38830 (8)0.31870 (14)0.42697 (5)0.0192 (3)
N30.45143 (8)0.35663 (12)0.13270 (5)0.0166 (3)
N40.58841 (8)0.33324 (13)0.07804 (6)0.0184 (3)
C10.39065 (9)0.45278 (15)0.16603 (6)0.0158 (4)
C20.29157 (9)0.40893 (14)0.16576 (6)0.0156 (4)
C30.23533 (9)0.37551 (15)0.11520 (7)0.0190 (4)
C40.14426 (10)0.34209 (16)0.12735 (7)0.0216 (4)
C50.11093 (9)0.34332 (15)0.18873 (7)0.0202 (4)
C60.16762 (9)0.37606 (15)0.23927 (7)0.0183 (4)
C70.25847 (9)0.40992 (15)0.22654 (6)0.0157 (4)
C80.33352 (9)0.45371 (15)0.27125 (6)0.0161 (3)
C90.35403 (9)0.19953 (15)0.31148 (6)0.0180 (4)
C100.36122 (9)0.41503 (15)0.38270 (6)0.0163 (4)
C110.40137 (10)0.36344 (17)0.49181 (7)0.0229 (4)
C120.45527 (10)0.20371 (14)0.15296 (7)0.0187 (4)
C130.51929 (9)0.42070 (14)0.09633 (6)0.0151 (3)
C140.65525 (9)0.38690 (17)0.03293 (7)0.0216 (4)
H10.3955 (12)0.5527 (19)0.1483 (8)0.0190*
H2N0.4057 (14)0.238 (2)0.4170 (9)0.0287*
H30.257890.375440.074250.0228*
H40.105340.318750.094190.0259*
H4N0.5954 (13)0.244 (2)0.0902 (9)0.0276*
H50.049700.321870.196020.0243*
H60.145540.375370.280350.0220*
H80.3231 (12)0.5534 (18)0.2901 (8)0.0193*
H9A0.320720.145780.342890.0269*
H9B0.329570.177630.270580.0269*
H9C0.417290.171760.312910.0269*
H11A0.372410.456750.498610.0344*0.500
H11B0.374810.291470.519340.0344*0.500
H11C0.465560.371760.500470.0344*0.500
H11D0.436110.289910.513670.0344*0.500
H11E0.433710.455180.492940.0344*0.500
H11F0.342960.374890.511810.0344*0.500
H12A0.497920.194230.187070.0280*
H12B0.395780.172960.166730.0280*
H12C0.474630.143230.118400.0280*
H14A0.687800.468460.050790.0324*
H14B0.697540.309690.022950.0324*
H14C0.624560.417980.004750.0324*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0130 (5)0.0212 (5)0.0180 (5)0.0019 (3)0.0006 (3)0.0010 (4)
O20.0210 (5)0.0152 (5)0.0231 (5)0.0014 (4)0.0019 (4)0.0037 (4)
O30.0177 (5)0.0155 (5)0.0214 (5)0.0014 (3)0.0001 (4)0.0022 (4)
N10.0202 (6)0.0135 (6)0.0179 (6)0.0002 (4)0.0003 (4)0.0011 (4)
N20.0206 (6)0.0189 (6)0.0180 (6)0.0029 (4)0.0016 (5)0.0031 (5)
N30.0153 (6)0.0130 (5)0.0216 (6)0.0005 (4)0.0032 (4)0.0012 (4)
N40.0149 (6)0.0172 (6)0.0232 (6)0.0019 (4)0.0025 (4)0.0031 (5)
C10.0149 (6)0.0149 (7)0.0176 (6)0.0004 (5)0.0007 (5)0.0003 (5)
C20.0144 (6)0.0121 (6)0.0204 (7)0.0015 (5)0.0001 (5)0.0008 (5)
C30.0189 (7)0.0185 (7)0.0195 (6)0.0014 (5)0.0011 (5)0.0009 (5)
C40.0184 (7)0.0186 (7)0.0278 (8)0.0001 (5)0.0063 (5)0.0010 (6)
C50.0131 (6)0.0157 (7)0.0318 (8)0.0006 (5)0.0009 (5)0.0009 (5)
C60.0167 (7)0.0145 (6)0.0238 (7)0.0002 (5)0.0037 (5)0.0001 (5)
C70.0151 (6)0.0111 (6)0.0209 (7)0.0009 (5)0.0002 (5)0.0001 (5)
C80.0136 (6)0.0154 (6)0.0193 (6)0.0005 (5)0.0013 (5)0.0000 (5)
C90.0201 (7)0.0138 (7)0.0200 (6)0.0014 (5)0.0013 (5)0.0008 (5)
C100.0115 (6)0.0174 (7)0.0199 (6)0.0020 (5)0.0020 (5)0.0017 (5)
C110.0233 (7)0.0261 (8)0.0194 (7)0.0018 (6)0.0034 (5)0.0018 (5)
C120.0198 (7)0.0138 (7)0.0224 (6)0.0007 (5)0.0031 (5)0.0016 (5)
C130.0136 (6)0.0154 (6)0.0162 (6)0.0012 (5)0.0020 (5)0.0003 (5)
C140.0157 (7)0.0251 (8)0.0240 (7)0.0003 (5)0.0036 (5)0.0006 (6)
Geometric parameters (Å, º) top
O1—C11.4515 (15)C7—C81.5053 (18)
O1—C81.4465 (16)C1—H10.987 (17)
O2—C101.2370 (16)C3—H30.9300
O3—C131.2363 (16)C4—H40.9300
N1—C81.4335 (17)C5—H50.9300
N1—C91.4568 (17)C6—H60.9300
N1—C101.3802 (17)C8—H81.003 (17)
N2—C101.3450 (18)C9—H9A0.9600
N2—C111.4482 (18)C9—H9B0.9600
N3—C11.4344 (17)C9—H9C0.9600
N3—C121.4578 (17)C11—H11A0.9600
N3—C131.3864 (17)C11—H11B0.9600
N4—C131.3444 (18)C11—H11C0.9600
N4—C141.4534 (19)C11—H11D0.9600
N2—H2N0.806 (19)C11—H11E0.9600
N4—H4N0.858 (18)C11—H11F0.9600
C1—C21.5037 (19)C12—H12A0.9600
C2—C71.3783 (18)C12—H12B0.9600
C2—C31.3863 (19)C12—H12C0.9600
C3—C41.391 (2)C14—H14A0.9600
C4—C51.392 (2)C14—H14B0.9600
C5—C61.389 (2)C14—H14C0.9600
C6—C71.3911 (19)
O2···C12i3.3662 (18)H1···C4iv2.734 (17)
O2···N4i2.8322 (15)H1···C5iv2.782 (17)
O3···N2i2.8229 (16)H2N···C92.390 (19)
O3···C9i3.2836 (16)H2N···H9A2.1700
O1···H5ii2.7800H2N···H9C2.3000
O1···H12A2.8400H2N···O3vi2.062 (19)
O2···H11A2.3900H3···H11Bvii2.5700
O2···H11E2.5800H4N···C122.473 (19)
O2···H82.239 (17)H4N···H12A2.5400
O2···H14Aiii2.7100H4N···H12C2.0800
O2···H9Aiv2.8400H4N···O2vi2.006 (18)
O2···H4Ni2.006 (18)H5···O1iii2.7800
O2···H12Ci2.7500H5···C9iii3.0800
O3···H14C2.7100H5···H9Ciii2.3800
O3···H12.263 (17)H6···C9iv3.0200
O3···H14A2.7200H8···O22.239 (17)
O3···H2Ni2.062 (19)H8···C9iv2.948 (17)
O3···H9Ci2.7100H8···H9Aiv2.5300
O3···H14Cv2.6100H8···H9Biv2.5400
N2···O3vi2.8229 (16)H9A···N22.5800
N4···O2vi2.8322 (15)H9A···H2N2.1700
N2···H9A2.5800H9A···O2viii2.8400
N2···H9C2.8000H9A···H8viii2.5300
N3···H11Dvii2.8700H9B···C63.0500
N4···H12C2.5500H9B···C72.5400
N4···H11Dvii2.8400H9B···H12B2.4100
C1···C5iv3.5871 (19)H9B···C6viii2.8200
C5···C12iv3.5034 (19)H9B···C7viii2.9100
C5···C1viii3.5871 (19)H9B···H8viii2.5400
C6···C9iv3.3344 (19)H9C···N22.8000
C6···C93.5173 (19)H9C···H2N2.3000
C7···C9iv3.5930 (19)H9C···O3vi2.7100
C9···C7viii3.5930 (19)H9C···H5ii2.3800
C9···O3vi3.2836 (16)H11A···O22.3900
C9···C6viii3.3344 (19)H11B···C12ix3.0700
C9···C63.5173 (19)H11B···H3ix2.5700
C10···C14iii3.5153 (19)H11C···H12Cix2.5100
C11···C12ix3.564 (2)H11D···N3ix2.8700
C12···O2vi3.3662 (18)H11D···N4ix2.8400
C12···C11vii3.564 (2)H11D···C12ix2.9700
C12···C5viii3.5034 (19)H11D···C13ix2.8700
C14···C10ii3.5153 (19)H11D···H12Cix2.3700
C2···H12B2.6300H11E···O22.5800
C4···H1viii2.734 (17)H11E···C11x2.9400
C5···H12Biv3.0400H11F···C14iii2.9100
C5···H1viii2.782 (17)H11F···H14Biii2.3300
C6···H9Biv2.8200H12A···O12.8400
C6···H9B3.0500H12A···H4N2.5400
C7···H9Biv2.9100H12B···C22.6300
C7···H9B2.5400H12B···H9B2.4100
C9···H8viii2.948 (17)H12B···C5viii3.0400
C9···H5ii3.0800H12C···N42.5500
C9···H6viii3.0200H12C···H4N2.0800
C9···H2N2.390 (19)H12C···O2vi2.7500
C10···H14Aiii2.9400H12C···C11vii2.8900
C11···H14Biii3.0400H12C···H11Cvii2.5100
C11···H12Cix2.8900H12C···H11Dvii2.3700
C11···H11Ex2.9400H14A···O32.7200
C12···H11Bvii3.0700H14A···O2ii2.7100
C12···H11Dvii2.9700H14A···C10ii2.9400
C12···H4N2.473 (19)H14B···C11ii3.0400
C13···H11Dvii2.8700H14B···H11Fii2.3300
C14···H11Fii2.9100H14C···O32.7100
H1···O32.263 (17)H14C···O3v2.6100
C1—O1—C8110.78 (9)C5—C6—H6121.00
C8—N1—C9118.52 (10)C7—C6—H6121.00
C8—N1—C10119.14 (11)O1—C8—H8109.8 (10)
C9—N1—C10121.77 (11)N1—C8—H8105.5 (10)
C10—N2—C11121.32 (12)C7—C8—H8112.3 (10)
C1—N3—C12117.44 (11)N1—C9—H9A109.00
C1—N3—C13117.53 (11)N1—C9—H9B109.00
C12—N3—C13122.57 (11)N1—C9—H9C109.00
C13—N4—C14119.84 (12)H9A—C9—H9B109.00
C10—N2—H2N120.3 (14)H9A—C9—H9C109.00
C11—N2—H2N117.7 (14)H9B—C9—H9C109.00
C13—N4—H4N124.3 (13)N2—C11—H11A109.00
C14—N4—H4N115.9 (13)N2—C11—H11B109.00
O1—C1—N3109.92 (10)N2—C11—H11C109.00
O1—C1—C2104.04 (10)N2—C11—H11D109.00
N3—C1—C2115.72 (11)N2—C11—H11E109.00
C1—C2—C7109.48 (11)N2—C11—H11F109.00
C3—C2—C7121.18 (12)H11A—C11—H11B109.00
C1—C2—C3129.31 (12)H11A—C11—H11C109.00
C2—C3—C4118.23 (13)H11A—C11—H11D141.00
C3—C4—C5120.51 (13)H11A—C11—H11E56.00
C4—C5—C6121.07 (13)H11A—C11—H11F56.00
C5—C6—C7117.92 (13)H11B—C11—H11C109.00
C2—C7—C8109.62 (11)H11B—C11—H11D56.00
C6—C7—C8129.29 (12)H11B—C11—H11E141.00
C2—C7—C6121.08 (12)H11B—C11—H11F56.00
O1—C8—N1110.52 (11)H11C—C11—H11D56.00
O1—C8—C7104.04 (10)H11C—C11—H11E56.00
N1—C8—C7114.64 (11)H11C—C11—H11F141.00
O2—C10—N1121.74 (12)H11D—C11—H11E109.00
O2—C10—N2122.68 (12)H11D—C11—H11F109.00
N1—C10—N2115.53 (12)H11E—C11—H11F109.00
O3—C13—N4122.04 (12)N3—C12—H12A109.00
N3—C13—N4116.78 (11)N3—C12—H12B109.00
O3—C13—N3121.16 (12)N3—C12—H12C109.00
O1—C1—H1109.5 (10)H12A—C12—H12B109.00
N3—C1—H1109.2 (10)H12A—C12—H12C109.00
C2—C1—H1108.2 (10)H12B—C12—H12C109.00
C2—C3—H3121.00N4—C14—H14A109.00
C4—C3—H3121.00N4—C14—H14B109.00
C3—C4—H4120.00N4—C14—H14C109.00
C5—C4—H4120.00H14A—C14—H14B109.00
C4—C5—H5119.00H14A—C14—H14C109.00
C6—C5—H5119.00H14B—C14—H14C109.00
C8—O1—C1—N3138.76 (11)C14—N4—C13—O36.6 (2)
C8—O1—C1—C214.26 (13)C14—N4—C13—N3171.61 (12)
C1—O1—C8—N1137.61 (11)O1—C1—C2—C3173.35 (13)
C1—O1—C8—C714.08 (13)O1—C1—C2—C78.71 (14)
C9—N1—C8—O166.82 (14)N3—C1—C2—C352.67 (19)
C9—N1—C8—C750.35 (16)N3—C1—C2—C7129.39 (12)
C10—N1—C8—O1104.63 (13)C1—C2—C3—C4178.04 (13)
C10—N1—C8—C7138.20 (12)C7—C2—C3—C40.3 (2)
C8—N1—C10—O213.95 (19)C1—C2—C7—C6178.74 (12)
C8—N1—C10—N2168.36 (12)C1—C2—C7—C80.30 (15)
C9—N1—C10—O2174.89 (12)C3—C2—C7—C60.6 (2)
C9—N1—C10—N22.80 (18)C3—C2—C7—C8178.44 (12)
C11—N2—C10—O21.7 (2)C2—C3—C4—C50.4 (2)
C11—N2—C10—N1176.00 (12)C3—C4—C5—C60.8 (2)
C12—N3—C1—O158.72 (15)C4—C5—C6—C71.0 (2)
C12—N3—C1—C258.73 (15)C5—C6—C7—C20.9 (2)
C13—N3—C1—O1103.94 (13)C5—C6—C7—C8177.90 (13)
C13—N3—C1—C2138.62 (12)C2—C7—C8—O18.26 (14)
C1—N3—C13—O317.51 (18)C2—C7—C8—N1129.07 (12)
C1—N3—C13—N4164.25 (12)C6—C7—C8—O1172.81 (13)
C12—N3—C13—O3179.21 (12)C6—C7—C8—N151.99 (19)
C12—N3—C13—N42.54 (18)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x1/2, y, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1, y+1, z; (vi) x+1, y1/2, z+1/2; (vii) x, y+1/2, z1/2; (viii) x+1/2, y1/2, z; (ix) x, y+1/2, z+1/2; (x) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O3vi0.806 (19)2.062 (19)2.8229 (16)157.4 (19)
N4—H4N···O2vi0.858 (18)2.006 (18)2.8322 (15)161.2 (18)
C1—H1···O30.987 (17)2.263 (17)2.7205 (16)107.0 (12)
C8—H8···O21.003 (17)2.239 (17)2.7505 (17)110.1 (12)
C11—H11A···O20.962.392.7730 (18)103.0
C9—H9B···CgA0.962.66003.0207 (14)103.0
C12—H12B···CgA0.962.72003.0046 (15)98.0
Symmetry code: (vi) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H20N4O3
Mr292.34
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)14.6322 (6), 9.1014 (3), 21.2307 (9)
V3)2827.37 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.10 × 0.06
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.982, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
19271, 3257, 2741
Rint0.033
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.150, 1.02
No. of reflections3257
No. of parameters206
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.30

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O3i0.806 (19)2.062 (19)2.8229 (16)157.4 (19)
N4—H4N···O2i0.858 (18)2.006 (18)2.8322 (15)161.2 (18)
C1—H1···O30.987 (17)2.263 (17)2.7205 (16)107.0 (12)
C8—H8···O21.003 (17)2.239 (17)2.7505 (17)110.1 (12)
C11—H11A···O20.962.392.7730 (18)103.0
C9—H9B···CgA0.962.66003.0207 (14)103.0
C12—H12B···CgA0.962.72003.0046 (15)98.0
Symmetry code: (i) x+1, y1/2, z+1/2.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarper, J. K., Arif, A. M., Ford, E. J., Strobel, G. A., Porco, J. A. Jr, Tomer, D. P., ONaill, K. L., Heider, E. M. & Grant, D. M. (2003). Tetrahedron, pp. 2471–2476.  Web of Science CSD CrossRef Google Scholar
First citationLin, X., Huang, Y., Fang, M., Wang, J., Zheng, Z. & Su, W. (2005). FEMS Microbiol. Lett. pp. 53–58.  Web of Science CrossRef CAS Google Scholar
First citationMaliha, B., Hussain, I., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaliha, B., Hussain, I., Tahir, M. N., Tariq, M. I. & Siddiqui, H. L. (2008). Acta Cryst. E64, o626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaliha, B., Tariq, M. I., Tahir, M. N., Hussain, I. & Ali, M. (2009). Acta Cryst. E65, o41.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaliha, B., Tariq, M. I., Tahir, M. N., Hussain, I. & Siddiqui, H. L. (2008). Acta Cryst. E64, o786.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o3042–o3043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoy, H. N. & Sarkar, M. S. (2005). Synth. Commun. 35, 2177–2181.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsi, D. & Tan, B. K. H. (1997). Phytother. Res. 11, 576–582.  CrossRef CAS Google Scholar
First citationVeeraraghavan, R. P., Chen, G. M. & Brown, H. C. (1996). Tetrahedron Lett. pp. 2205–2208.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o42-o43
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds