organic compounds
4-[(E)-(5-Chloro-2-hydroxybenzylidene)amino]benzenesulfonamide
aDepartment of Chemistry, Bahauddin Zakariya University, Multan-60800, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com
In the molecule of title compound, C13H11ClN2O3S, the aromatic rings are oriented at a dihedral angle of 12.27 (3)°. An intramolecular O—H⋯N hydrogen bond results in the formation of a planar (mean deviation 0.0083 Å) six-membered ring, which is nearly coplanar with the adjacent ring at a dihedral angle of 2.36 (13)°. In the sulfonamide group, the S atom is 0.457 (3) Å from the plane through the O and N atoms. In the intermolecular N—H⋯O hydrogen bonds link the molecules.
Related literature
For general background, see: Chohan (2008); Chohan & Shad (2008); Chohan & Supuran (2008); Nishimori et al. (2005). For related structures, see: Chohan et al. (2008a,b); Shad et al. (2008); Gelbrich et al. (2008). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536808040853/hk2593sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808040853/hk2593Isup2.hkl
For the preparation of the title compound, sulfanilamide (344.4 mg, 2 mmol) in ethanol (20 ml) was mixed with 5-chlorosalicylaldehyde (313.1 mg, 2 mmol) in ethanol (10 ml). The resultant mixture was refluxed for 3 h by monitoring through TLC. During refluxing the solution turned from colorless to bright orange. After completion of reaction, it was cooled to room temperature, filtered and volume reduced to about one-third using rotary evaporator. It was then allowed to stand for 6 d at room temperature. After which, a crystallized product was formed that was filtered, washed with ethanol (2x5 ml), dried and recrystallized in a mixture of methanol/ethanol (1:1) to afford the orange crystals of the title compound (m.p. 469-471 K).
H7 (for CH) and H21, H22 (for NH2) atoms were located in difference syntheses and refined isotropically [C-H = 0.97 (4) Å, Uiso(H) = 0.040 (13) Å2; N-H = 0.87 (4) and 0.87 (5) Å; Uiso(H) = 0.07 (2) and 0.08 (2) Å2]. The remaining H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for aromatic H atoms.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).C13H11ClN2O3S | F(000) = 320 |
Mr = 310.76 | Dx = 1.566 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 1848 reflections |
a = 6.1936 (9) Å | θ = 0.9–26.4° |
b = 4.6002 (7) Å | µ = 0.46 mm−1 |
c = 23.252 (3) Å | T = 296 K |
β = 95.699 (7)° | Prism, orange |
V = 659.22 (16) Å3 | 0.25 × 0.18 × 0.15 mm |
Z = 2 |
Bruker Kappa APEXII CCD diffractometer | 3172 independent reflections |
Radiation source: fine-focus sealed tube | 1842 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
Detector resolution: 7.6 pixels mm-1 | θmax = 28.5°, θmin = 0.9° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −6→6 |
Tmin = 0.904, Tmax = 0.935 | l = −31→29 |
7850 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.132 | w = 1/[σ2(Fo2) + (0.0408P)2 + 0.3674P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
3172 reflections | Δρmax = 0.25 e Å−3 |
193 parameters | Δρmin = −0.36 e Å−3 |
4 restraints | Absolute structure: Flack (1983), 1125 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.09 (13) |
C13H11ClN2O3S | V = 659.22 (16) Å3 |
Mr = 310.76 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 6.1936 (9) Å | µ = 0.46 mm−1 |
b = 4.6002 (7) Å | T = 296 K |
c = 23.252 (3) Å | 0.25 × 0.18 × 0.15 mm |
β = 95.699 (7)° |
Bruker Kappa APEXII CCD diffractometer | 3172 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1842 reflections with I > 2σ(I) |
Tmin = 0.904, Tmax = 0.935 | Rint = 0.053 |
7850 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.132 | Δρmax = 0.25 e Å−3 |
S = 1.02 | Δρmin = −0.36 e Å−3 |
3172 reflections | Absolute structure: Flack (1983), 1125 Friedel pairs |
193 parameters | Absolute structure parameter: 0.09 (13) |
4 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.76662 (18) | 1.3639 (2) | 0.57243 (4) | 0.0351 (3) | |
Cl1 | 0.7848 (2) | −0.1726 (4) | 0.96987 (6) | 0.0659 (4) | |
O1 | 0.1496 (5) | 0.3015 (9) | 0.79117 (14) | 0.0554 (10) | |
H1 | 0.2062 | 0.4241 | 0.7719 | 0.083* | |
O2 | 0.9594 (5) | 1.5110 (7) | 0.59629 (14) | 0.0498 (9) | |
O3 | 0.5902 (5) | 1.5306 (7) | 0.54481 (14) | 0.0472 (9) | |
N1 | 0.4614 (6) | 0.6117 (9) | 0.75542 (16) | 0.0365 (9) | |
N2 | 0.8345 (8) | 1.1435 (9) | 0.52410 (19) | 0.0431 (11) | |
H21 | 0.726 (6) | 1.068 (12) | 0.5029 (19) | 0.07 (2)* | |
H22 | 0.929 (8) | 1.022 (12) | 0.541 (2) | 0.08 (2)* | |
C1 | 0.5139 (7) | 0.2913 (9) | 0.83587 (19) | 0.0344 (11) | |
C2 | 0.2983 (8) | 0.1959 (11) | 0.8319 (2) | 0.0394 (12) | |
C3 | 0.2389 (8) | −0.0151 (12) | 0.8696 (2) | 0.0490 (13) | |
H3 | 0.0970 | −0.0837 | 0.8659 | 0.059* | |
C4 | 0.3850 (8) | −0.1254 (15) | 0.91213 (19) | 0.0501 (12) | |
H4 | 0.3418 | −0.2638 | 0.9378 | 0.060* | |
C5 | 0.5997 (8) | −0.0272 (11) | 0.91650 (19) | 0.0430 (12) | |
C6 | 0.6617 (8) | 0.1767 (11) | 0.8793 (2) | 0.0420 (12) | |
H6 | 0.8048 | 0.2409 | 0.8827 | 0.050* | |
C7 | 0.5892 (8) | 0.4971 (11) | 0.7953 (2) | 0.0391 (12) | |
H7 | 0.742 (7) | 0.545 (10) | 0.8017 (17) | 0.040 (13)* | |
C8 | 0.5381 (7) | 0.8040 (10) | 0.71469 (17) | 0.0335 (11) | |
C9 | 0.7445 (7) | 0.9293 (10) | 0.72084 (19) | 0.0425 (13) | |
H9 | 0.8379 | 0.8935 | 0.7539 | 0.051* | |
C10 | 0.8097 (8) | 1.1053 (10) | 0.67816 (19) | 0.0385 (12) | |
H10 | 0.9476 | 1.1875 | 0.6824 | 0.046* | |
C11 | 0.6728 (7) | 1.1609 (9) | 0.62919 (18) | 0.0312 (10) | |
C12 | 0.4655 (7) | 1.0440 (11) | 0.6241 (2) | 0.0422 (12) | |
H12 | 0.3702 | 1.0855 | 0.5916 | 0.051* | |
C13 | 0.4006 (7) | 0.8677 (14) | 0.66654 (18) | 0.0411 (11) | |
H13 | 0.2612 | 0.7903 | 0.6627 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0380 (7) | 0.0288 (5) | 0.0380 (6) | −0.0026 (6) | 0.0009 (5) | −0.0002 (6) |
Cl1 | 0.0711 (9) | 0.0698 (10) | 0.0545 (8) | 0.0074 (9) | −0.0056 (7) | 0.0153 (8) |
O1 | 0.0333 (18) | 0.065 (3) | 0.066 (2) | −0.0079 (19) | −0.0044 (17) | 0.012 (2) |
O2 | 0.049 (2) | 0.048 (2) | 0.051 (2) | −0.0232 (18) | −0.0069 (17) | 0.0015 (17) |
O3 | 0.050 (2) | 0.0369 (19) | 0.053 (2) | 0.0081 (17) | −0.0039 (17) | 0.0064 (16) |
N1 | 0.035 (2) | 0.037 (2) | 0.038 (2) | −0.0014 (18) | 0.0037 (19) | 0.0012 (18) |
N2 | 0.047 (3) | 0.040 (3) | 0.043 (3) | −0.003 (2) | 0.011 (2) | −0.010 (2) |
C1 | 0.031 (3) | 0.033 (3) | 0.040 (3) | 0.002 (2) | 0.007 (2) | −0.003 (2) |
C2 | 0.032 (3) | 0.040 (3) | 0.046 (3) | −0.002 (2) | 0.007 (2) | −0.003 (2) |
C3 | 0.042 (3) | 0.052 (3) | 0.056 (3) | −0.007 (3) | 0.018 (3) | −0.002 (3) |
C4 | 0.060 (3) | 0.052 (3) | 0.042 (3) | −0.006 (4) | 0.021 (2) | 0.000 (3) |
C5 | 0.054 (3) | 0.044 (3) | 0.031 (3) | 0.007 (3) | 0.005 (2) | −0.001 (2) |
C6 | 0.037 (3) | 0.042 (3) | 0.047 (3) | 0.001 (2) | 0.003 (2) | −0.004 (2) |
C7 | 0.028 (3) | 0.038 (3) | 0.052 (3) | −0.004 (2) | 0.005 (3) | −0.002 (2) |
C8 | 0.033 (3) | 0.035 (3) | 0.034 (2) | 0.003 (2) | 0.008 (2) | −0.003 (2) |
C9 | 0.034 (3) | 0.054 (4) | 0.038 (3) | −0.003 (2) | −0.006 (2) | 0.007 (2) |
C10 | 0.030 (3) | 0.045 (3) | 0.039 (3) | −0.006 (2) | −0.002 (2) | 0.002 (2) |
C11 | 0.028 (3) | 0.030 (2) | 0.036 (3) | 0.000 (2) | 0.001 (2) | −0.002 (2) |
C12 | 0.029 (3) | 0.049 (3) | 0.046 (3) | 0.000 (2) | −0.008 (2) | 0.008 (2) |
C13 | 0.024 (2) | 0.049 (3) | 0.050 (3) | −0.003 (3) | 0.005 (2) | 0.008 (3) |
Cl1—C5 | 1.738 (5) | C6—C5 | 1.358 (7) |
S1—O2 | 1.435 (3) | C6—H6 | 0.9300 |
S1—O3 | 1.434 (3) | C7—N1 | 1.272 (6) |
S1—N2 | 1.600 (4) | C7—C1 | 1.446 (6) |
S1—C11 | 1.762 (5) | C7—H7 | 0.97 (4) |
O1—H1 | 0.8200 | C8—N1 | 1.412 (5) |
N2—H21 | 0.87 (4) | C9—C8 | 1.397 (6) |
N2—H22 | 0.87 (5) | C9—C10 | 1.372 (6) |
C2—O1 | 1.344 (5) | C9—H9 | 0.9300 |
C2—C3 | 1.381 (7) | C10—H10 | 0.9300 |
C2—C1 | 1.400 (6) | C11—C10 | 1.375 (6) |
C3—C4 | 1.370 (7) | C11—C12 | 1.386 (6) |
C3—H3 | 0.9300 | C12—H12 | 0.9300 |
C4—H4 | 0.9300 | C13—C8 | 1.370 (6) |
C5—C4 | 1.398 (7) | C13—C12 | 1.369 (7) |
C6—C1 | 1.397 (6) | C13—H13 | 0.9300 |
O2—S1—N2 | 107.7 (2) | C6—C5—C4 | 120.3 (5) |
O2—S1—C11 | 106.48 (19) | C1—C6—H6 | 119.5 |
O3—S1—O2 | 119.3 (2) | C5—C6—C1 | 121.0 (5) |
O3—S1—N2 | 105.4 (2) | C5—C6—H6 | 119.5 |
O3—S1—C11 | 109.0 (2) | N1—C7—C1 | 121.9 (4) |
N2—S1—C11 | 108.6 (2) | N1—C7—H7 | 123 (3) |
C2—O1—H1 | 109.5 | C1—C7—H7 | 115 (3) |
C7—N1—C8 | 121.4 (4) | C9—C8—N1 | 123.7 (4) |
S1—N2—H21 | 114 (4) | C13—C8—C9 | 118.9 (4) |
S1—N2—H22 | 108 (4) | C13—C8—N1 | 117.3 (4) |
H21—N2—H22 | 117 (6) | C8—C9—H9 | 119.9 |
C2—C1—C7 | 122.0 (4) | C10—C9—C8 | 120.1 (4) |
C6—C1—C2 | 118.8 (4) | C10—C9—H9 | 119.9 |
C6—C1—C7 | 119.2 (4) | C9—C10—C11 | 120.5 (4) |
O1—C2—C1 | 121.0 (4) | C9—C10—H10 | 119.8 |
O1—C2—C3 | 119.6 (5) | C11—C10—H10 | 119.8 |
C3—C2—C1 | 119.4 (5) | C10—C11—C12 | 119.3 (4) |
C2—C3—H3 | 119.3 | C10—C11—S1 | 119.8 (4) |
C4—C3—C2 | 121.3 (5) | C12—C11—S1 | 120.8 (3) |
C4—C3—H3 | 119.3 | C11—C12—H12 | 119.9 |
C3—C4—C5 | 119.2 (5) | C13—C12—C11 | 120.2 (4) |
C3—C4—H4 | 120.4 | C13—C12—H12 | 119.9 |
C5—C4—H4 | 120.4 | C8—C13—H13 | 119.6 |
C4—C5—Cl1 | 118.9 (4) | C12—C13—C8 | 120.9 (4) |
C6—C5—Cl1 | 120.9 (4) | C12—C13—H13 | 119.6 |
O2—S1—C11—C10 | −17.2 (4) | C1—C6—C5—C4 | −0.3 (7) |
O2—S1—C11—C12 | 165.9 (4) | C1—C6—C5—Cl1 | 179.2 (4) |
O3—S1—C11—C10 | −147.1 (4) | N1—C7—C1—C6 | −179.0 (5) |
O3—S1—C11—C12 | 36.0 (4) | N1—C7—C1—C2 | 3.1 (7) |
N2—S1—C11—C10 | 98.5 (4) | C1—C7—N1—C8 | −177.6 (4) |
N2—S1—C11—C12 | −78.4 (4) | C9—C8—N1—C7 | −13.3 (7) |
O1—C2—C1—C6 | 179.5 (4) | C13—C8—N1—C7 | 166.4 (5) |
O1—C2—C1—C7 | −2.6 (7) | C10—C9—C8—N1 | 177.4 (4) |
C3—C2—C1—C6 | −2.1 (7) | C10—C9—C8—C13 | −2.2 (7) |
C3—C2—C1—C7 | 175.8 (4) | C8—C9—C10—C11 | 0.3 (7) |
O1—C2—C3—C4 | −179.1 (5) | S1—C11—C10—C9 | −175.1 (4) |
C1—C2—C3—C4 | 2.4 (8) | C12—C11—C10—C9 | 1.8 (7) |
C2—C3—C4—C5 | −1.6 (8) | S1—C11—C12—C13 | 174.8 (4) |
C6—C5—C4—C3 | 0.5 (8) | C10—C11—C12—C13 | −2.0 (7) |
Cl1—C5—C4—C3 | −179.0 (4) | C12—C13—C8—N1 | −177.6 (5) |
C5—C6—C1—C2 | 1.1 (7) | C12—C13—C8—C9 | 2.0 (8) |
C5—C6—C1—C7 | −176.9 (4) | C8—C13—C12—C11 | 0.1 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 1.87 | 2.603 (5) | 148 |
N2—H21···O3i | 0.87 (4) | 2.16 (4) | 2.986 (6) | 160 (5) |
Symmetry code: (i) −x+1, y−1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C13H11ClN2O3S |
Mr | 310.76 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 296 |
a, b, c (Å) | 6.1936 (9), 4.6002 (7), 23.252 (3) |
β (°) | 95.699 (7) |
V (Å3) | 659.22 (16) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.46 |
Crystal size (mm) | 0.25 × 0.18 × 0.15 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.904, 0.935 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7850, 3172, 1842 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.671 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.132, 1.02 |
No. of reflections | 3172 |
No. of parameters | 193 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.36 |
Absolute structure | Flack (1983), 1125 Friedel pairs |
Absolute structure parameter | 0.09 (13) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 1.87 | 2.603 (5) | 148.00 |
N2—H21···O3i | 0.87 (4) | 2.16 (4) | 2.986 (6) | 160 (5) |
Symmetry code: (i) −x+1, y−1/2, −z+1. |
Acknowledgements
The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chohan, Z. H. (2008). J. Enz. Inhib. Med. Chem. 23, 120–130. Web of Science CrossRef CAS Google Scholar
Chohan, Z. H. & Shad, H. A. (2008). J. Enz. Inhib. Med. Chem. 23, 369–379. Web of Science CrossRef CAS Google Scholar
Chohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008a). Acta Cryst. E64, o725. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chohan, Z. H. & Supuran, C. T. (2008). J. Enz. Inhib. Med. Chem. 23, 240–251. Web of Science CrossRef CAS Google Scholar
Chohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008b). Acta Cryst. E64, o648. Web of Science CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205–o207. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nishimori, I., Vullo, D., Innocenti, A., Scozzafava, A., Mastrolorenz, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 3828–3833. Web of Science CrossRef PubMed CAS Google Scholar
Shad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Sulfonamides have gained much attention due to their extensive use in medicine. Many novel sulfonamide derived compounds have been synthesized and reported (Chohan, 2008; Chohan & Shad, 2008; Chohan & Supuran, 2008; Nishimori et al., 2005) that are expected to attack the selective targets. This approach is supportive in controlling undesirable effects and producing distinctive pharmacological and clinical responses. In continuation to synthesize Schiff base ligands of 5-chlorosalicylaldehyde with different sulfonamides (Chohan et al., 2008a, 2008b; Shad et al., 2008), we have synthesized the title compound having the sulfanilamide, which is also a member of sulfonamides, and reported herein its crystal structure. The crystal structures of the individual moieties of δ-sulfanilamide have also been reported (Gelbrich et al., 2008) .
In the molecule of title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C8-C13) are, of course, planar, and the dihedral angle between them is A/B = 12.27 (3)°. The intramolecular O-H···N hydrogen bond (Table 1) results in the formation of a planar six-membered ring C (O1/N1/C1/C2/C7/H1), which is oriented with respect to rings A and B at dihedral angles of A/C = 2.36 (13)° and B/C = 13.22 (13)°. So, rings A and C are also nearly coplanar. In the sulfonamide group, the S1 atom is 0.457 (3) Å away from the plane of (O2/O3/N2).
In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.