organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(E)-(5-Chloro-2-hy­droxy­benzyl­­idene)amino]benzene­sulfonamide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan-60800, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 2 December 2008; accepted 3 December 2008; online 10 December 2008)

In the mol­ecule of title compound, C13H11ClN2O3S, the aromatic rings are oriented at a dihedral angle of 12.27 (3)°. An intra­molecular O—H⋯N hydrogen bond results in the formation of a planar (mean deviation 0.0083 Å) six-membered ring, which is nearly coplanar with the adjacent ring at a dihedral angle of 2.36 (13)°. In the sulfonamide group, the S atom is 0.457 (3) Å from the plane through the O and N atoms. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For general background, see: Chohan (2008[Chohan, Z. H. (2008). J. Enz. Inhib. Med. Chem. 23, 120-130.]); Chohan & Shad (2008[Chohan, Z. H. & Shad, H. A. (2008). J. Enz. Inhib. Med. Chem. 23, 369-379.]); Chohan & Supuran (2008[Chohan, Z. H. & Supuran, C. T. (2008). J. Enz. Inhib. Med. Chem. 23, 240-251.]); Nishimori et al. (2005[Nishimori, I., Vullo, D., Innocenti, A., Scozzafava, A., Mastrolorenz, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 3828-3833.]). For related structures, see: Chohan et al. (2008a[Chohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008a). Acta Cryst. E64, o725.],b[Chohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008b). Acta Cryst. E64, o648.]); Shad et al. (2008[Shad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635.]); Gelbrich et al. (2008[Gelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205-o207.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11ClN2O3S

  • Mr = 310.76

  • Monoclinic, P 21

  • a = 6.1936 (9) Å

  • b = 4.6002 (7) Å

  • c = 23.252 (3) Å

  • β = 95.699 (7)°

  • V = 659.22 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 296 (2) K

  • 0.25 × 0.18 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.904, Tmax = 0.935

  • 7850 measured reflections

  • 3172 independent reflections

  • 1842 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.132

  • S = 1.02

  • 3172 reflections

  • 193 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1125 Friedel pairs

  • Flack parameter: 0.09 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.603 (5) 148
N2—H21⋯O3i 0.87 (4) 2.16 (4) 2.986 (6) 160 (5)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamides have gained much attention due to their extensive use in medicine. Many novel sulfonamide derived compounds have been synthesized and reported (Chohan, 2008; Chohan & Shad, 2008; Chohan & Supuran, 2008; Nishimori et al., 2005) that are expected to attack the selective targets. This approach is supportive in controlling undesirable effects and producing distinctive pharmacological and clinical responses. In continuation to synthesize Schiff base ligands of 5-chlorosalicylaldehyde with different sulfonamides (Chohan et al., 2008a, 2008b; Shad et al., 2008), we have synthesized the title compound having the sulfanilamide, which is also a member of sulfonamides, and reported herein its crystal structure. The crystal structures of the individual moieties of δ-sulfanilamide have also been reported (Gelbrich et al., 2008) .

In the molecule of title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C8-C13) are, of course, planar, and the dihedral angle between them is A/B = 12.27 (3)°. The intramolecular O-H···N hydrogen bond (Table 1) results in the formation of a planar six-membered ring C (O1/N1/C1/C2/C7/H1), which is oriented with respect to rings A and B at dihedral angles of A/C = 2.36 (13)° and B/C = 13.22 (13)°. So, rings A and C are also nearly coplanar. In the sulfonamide group, the S1 atom is 0.457 (3) Å away from the plane of (O2/O3/N2).

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Chohan (2008); Chohan & Shad (2008); Chohan & Supuran (2008); Nishimori et al. (2005). For related structures, see: Chohan et al. (2008a,b); Shad et al. (2008); Gelbrich et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, sulfanilamide (344.4 mg, 2 mmol) in ethanol (20 ml) was mixed with 5-chlorosalicylaldehyde (313.1 mg, 2 mmol) in ethanol (10 ml). The resultant mixture was refluxed for 3 h by monitoring through TLC. During refluxing the solution turned from colorless to bright orange. After completion of reaction, it was cooled to room temperature, filtered and volume reduced to about one-third using rotary evaporator. It was then allowed to stand for 6 d at room temperature. After which, a crystallized product was formed that was filtered, washed with ethanol (2x5 ml), dried and recrystallized in a mixture of methanol/ethanol (1:1) to afford the orange crystals of the title compound (m.p. 469-471 K).

Refinement top

H7 (for CH) and H21, H22 (for NH2) atoms were located in difference syntheses and refined isotropically [C-H = 0.97 (4) Å, Uiso(H) = 0.040 (13) Å2; N-H = 0.87 (4) and 0.87 (5) Å; Uiso(H) = 0.07 (2) and 0.08 (2) Å2]. The remaining H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
4-[(E)-(5-Chloro-2-hydroxybenzylidene)amino]benzenesulfonamide top
Crystal data top
C13H11ClN2O3SF(000) = 320
Mr = 310.76Dx = 1.566 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1848 reflections
a = 6.1936 (9) Åθ = 0.9–26.4°
b = 4.6002 (7) ŵ = 0.46 mm1
c = 23.252 (3) ÅT = 296 K
β = 95.699 (7)°Prism, orange
V = 659.22 (16) Å30.25 × 0.18 × 0.15 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3172 independent reflections
Radiation source: fine-focus sealed tube1842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 7.6 pixels mm-1θmax = 28.5°, θmin = 0.9°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 66
Tmin = 0.904, Tmax = 0.935l = 3129
7850 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.3674P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3172 reflectionsΔρmax = 0.25 e Å3
193 parametersΔρmin = 0.36 e Å3
4 restraintsAbsolute structure: Flack (1983), 1125 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (13)
Crystal data top
C13H11ClN2O3SV = 659.22 (16) Å3
Mr = 310.76Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.1936 (9) ŵ = 0.46 mm1
b = 4.6002 (7) ÅT = 296 K
c = 23.252 (3) Å0.25 × 0.18 × 0.15 mm
β = 95.699 (7)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3172 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1842 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.935Rint = 0.053
7850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132Δρmax = 0.25 e Å3
S = 1.02Δρmin = 0.36 e Å3
3172 reflectionsAbsolute structure: Flack (1983), 1125 Friedel pairs
193 parametersAbsolute structure parameter: 0.09 (13)
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.76662 (18)1.3639 (2)0.57243 (4)0.0351 (3)
Cl10.7848 (2)0.1726 (4)0.96987 (6)0.0659 (4)
O10.1496 (5)0.3015 (9)0.79117 (14)0.0554 (10)
H10.20620.42410.77190.083*
O20.9594 (5)1.5110 (7)0.59629 (14)0.0498 (9)
O30.5902 (5)1.5306 (7)0.54481 (14)0.0472 (9)
N10.4614 (6)0.6117 (9)0.75542 (16)0.0365 (9)
N20.8345 (8)1.1435 (9)0.52410 (19)0.0431 (11)
H210.726 (6)1.068 (12)0.5029 (19)0.07 (2)*
H220.929 (8)1.022 (12)0.541 (2)0.08 (2)*
C10.5139 (7)0.2913 (9)0.83587 (19)0.0344 (11)
C20.2983 (8)0.1959 (11)0.8319 (2)0.0394 (12)
C30.2389 (8)0.0151 (12)0.8696 (2)0.0490 (13)
H30.09700.08370.86590.059*
C40.3850 (8)0.1254 (15)0.91213 (19)0.0501 (12)
H40.34180.26380.93780.060*
C50.5997 (8)0.0272 (11)0.91650 (19)0.0430 (12)
C60.6617 (8)0.1767 (11)0.8793 (2)0.0420 (12)
H60.80480.24090.88270.050*
C70.5892 (8)0.4971 (11)0.7953 (2)0.0391 (12)
H70.742 (7)0.545 (10)0.8017 (17)0.040 (13)*
C80.5381 (7)0.8040 (10)0.71469 (17)0.0335 (11)
C90.7445 (7)0.9293 (10)0.72084 (19)0.0425 (13)
H90.83790.89350.75390.051*
C100.8097 (8)1.1053 (10)0.67816 (19)0.0385 (12)
H100.94761.18750.68240.046*
C110.6728 (7)1.1609 (9)0.62919 (18)0.0312 (10)
C120.4655 (7)1.0440 (11)0.6241 (2)0.0422 (12)
H120.37021.08550.59160.051*
C130.4006 (7)0.8677 (14)0.66654 (18)0.0411 (11)
H130.26120.79030.66270.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0380 (7)0.0288 (5)0.0380 (6)0.0026 (6)0.0009 (5)0.0002 (6)
Cl10.0711 (9)0.0698 (10)0.0545 (8)0.0074 (9)0.0056 (7)0.0153 (8)
O10.0333 (18)0.065 (3)0.066 (2)0.0079 (19)0.0044 (17)0.012 (2)
O20.049 (2)0.048 (2)0.051 (2)0.0232 (18)0.0069 (17)0.0015 (17)
O30.050 (2)0.0369 (19)0.053 (2)0.0081 (17)0.0039 (17)0.0064 (16)
N10.035 (2)0.037 (2)0.038 (2)0.0014 (18)0.0037 (19)0.0012 (18)
N20.047 (3)0.040 (3)0.043 (3)0.003 (2)0.011 (2)0.010 (2)
C10.031 (3)0.033 (3)0.040 (3)0.002 (2)0.007 (2)0.003 (2)
C20.032 (3)0.040 (3)0.046 (3)0.002 (2)0.007 (2)0.003 (2)
C30.042 (3)0.052 (3)0.056 (3)0.007 (3)0.018 (3)0.002 (3)
C40.060 (3)0.052 (3)0.042 (3)0.006 (4)0.021 (2)0.000 (3)
C50.054 (3)0.044 (3)0.031 (3)0.007 (3)0.005 (2)0.001 (2)
C60.037 (3)0.042 (3)0.047 (3)0.001 (2)0.003 (2)0.004 (2)
C70.028 (3)0.038 (3)0.052 (3)0.004 (2)0.005 (3)0.002 (2)
C80.033 (3)0.035 (3)0.034 (2)0.003 (2)0.008 (2)0.003 (2)
C90.034 (3)0.054 (4)0.038 (3)0.003 (2)0.006 (2)0.007 (2)
C100.030 (3)0.045 (3)0.039 (3)0.006 (2)0.002 (2)0.002 (2)
C110.028 (3)0.030 (2)0.036 (3)0.000 (2)0.001 (2)0.002 (2)
C120.029 (3)0.049 (3)0.046 (3)0.000 (2)0.008 (2)0.008 (2)
C130.024 (2)0.049 (3)0.050 (3)0.003 (3)0.005 (2)0.008 (3)
Geometric parameters (Å, º) top
Cl1—C51.738 (5)C6—C51.358 (7)
S1—O21.435 (3)C6—H60.9300
S1—O31.434 (3)C7—N11.272 (6)
S1—N21.600 (4)C7—C11.446 (6)
S1—C111.762 (5)C7—H70.97 (4)
O1—H10.8200C8—N11.412 (5)
N2—H210.87 (4)C9—C81.397 (6)
N2—H220.87 (5)C9—C101.372 (6)
C2—O11.344 (5)C9—H90.9300
C2—C31.381 (7)C10—H100.9300
C2—C11.400 (6)C11—C101.375 (6)
C3—C41.370 (7)C11—C121.386 (6)
C3—H30.9300C12—H120.9300
C4—H40.9300C13—C81.370 (6)
C5—C41.398 (7)C13—C121.369 (7)
C6—C11.397 (6)C13—H130.9300
O2—S1—N2107.7 (2)C6—C5—C4120.3 (5)
O2—S1—C11106.48 (19)C1—C6—H6119.5
O3—S1—O2119.3 (2)C5—C6—C1121.0 (5)
O3—S1—N2105.4 (2)C5—C6—H6119.5
O3—S1—C11109.0 (2)N1—C7—C1121.9 (4)
N2—S1—C11108.6 (2)N1—C7—H7123 (3)
C2—O1—H1109.5C1—C7—H7115 (3)
C7—N1—C8121.4 (4)C9—C8—N1123.7 (4)
S1—N2—H21114 (4)C13—C8—C9118.9 (4)
S1—N2—H22108 (4)C13—C8—N1117.3 (4)
H21—N2—H22117 (6)C8—C9—H9119.9
C2—C1—C7122.0 (4)C10—C9—C8120.1 (4)
C6—C1—C2118.8 (4)C10—C9—H9119.9
C6—C1—C7119.2 (4)C9—C10—C11120.5 (4)
O1—C2—C1121.0 (4)C9—C10—H10119.8
O1—C2—C3119.6 (5)C11—C10—H10119.8
C3—C2—C1119.4 (5)C10—C11—C12119.3 (4)
C2—C3—H3119.3C10—C11—S1119.8 (4)
C4—C3—C2121.3 (5)C12—C11—S1120.8 (3)
C4—C3—H3119.3C11—C12—H12119.9
C3—C4—C5119.2 (5)C13—C12—C11120.2 (4)
C3—C4—H4120.4C13—C12—H12119.9
C5—C4—H4120.4C8—C13—H13119.6
C4—C5—Cl1118.9 (4)C12—C13—C8120.9 (4)
C6—C5—Cl1120.9 (4)C12—C13—H13119.6
O2—S1—C11—C1017.2 (4)C1—C6—C5—C40.3 (7)
O2—S1—C11—C12165.9 (4)C1—C6—C5—Cl1179.2 (4)
O3—S1—C11—C10147.1 (4)N1—C7—C1—C6179.0 (5)
O3—S1—C11—C1236.0 (4)N1—C7—C1—C23.1 (7)
N2—S1—C11—C1098.5 (4)C1—C7—N1—C8177.6 (4)
N2—S1—C11—C1278.4 (4)C9—C8—N1—C713.3 (7)
O1—C2—C1—C6179.5 (4)C13—C8—N1—C7166.4 (5)
O1—C2—C1—C72.6 (7)C10—C9—C8—N1177.4 (4)
C3—C2—C1—C62.1 (7)C10—C9—C8—C132.2 (7)
C3—C2—C1—C7175.8 (4)C8—C9—C10—C110.3 (7)
O1—C2—C3—C4179.1 (5)S1—C11—C10—C9175.1 (4)
C1—C2—C3—C42.4 (8)C12—C11—C10—C91.8 (7)
C2—C3—C4—C51.6 (8)S1—C11—C12—C13174.8 (4)
C6—C5—C4—C30.5 (8)C10—C11—C12—C132.0 (7)
Cl1—C5—C4—C3179.0 (4)C12—C13—C8—N1177.6 (5)
C5—C6—C1—C21.1 (7)C12—C13—C8—C92.0 (8)
C5—C6—C1—C7176.9 (4)C8—C13—C12—C110.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.603 (5)148
N2—H21···O3i0.87 (4)2.16 (4)2.986 (6)160 (5)
Symmetry code: (i) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H11ClN2O3S
Mr310.76
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)6.1936 (9), 4.6002 (7), 23.252 (3)
β (°) 95.699 (7)
V3)659.22 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.25 × 0.18 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.904, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
7850, 3172, 1842
Rint0.053
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.132, 1.02
No. of reflections3172
No. of parameters193
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.36
Absolute structureFlack (1983), 1125 Friedel pairs
Absolute structure parameter0.09 (13)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.603 (5)148.00
N2—H21···O3i0.87 (4)2.16 (4)2.986 (6)160 (5)
Symmetry code: (i) x+1, y1/2, z+1.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H. (2008). J. Enz. Inhib. Med. Chem. 23, 120–130.  Web of Science CrossRef CAS Google Scholar
First citationChohan, Z. H. & Shad, H. A. (2008). J. Enz. Inhib. Med. Chem. 23, 369–379.  Web of Science CrossRef CAS Google Scholar
First citationChohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008a). Acta Cryst. E64, o725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChohan, Z. H. & Supuran, C. T. (2008). J. Enz. Inhib. Med. Chem. 23, 240–251.  Web of Science CrossRef CAS Google Scholar
First citationChohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008b). Acta Cryst. E64, o648.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205–o207.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNishimori, I., Vullo, D., Innocenti, A., Scozzafava, A., Mastrolorenz, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 3828–3833.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds