organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-anilino-3-nitrobenzoate

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China, and bCollege of Life Sciences and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 4 December 2008; accepted 7 December 2008; online 10 December 2008)

In the title compound, C15H14N2O4, the aromatic rings are oriented at a dihedral angle of 78.33 (3)°. An intra­molecular N—H⋯O hydrogen bond results in a non-planar six-membered ring with a flattened-boat conformation. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules. ππ contacts between the phenyl rings and both the phenyl and benzene rings, [centroid–centroid distances = 3.841 (3) and 3.961 (3) Å] may further stabilize the structure.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O4

  • Mr = 286.28

  • Monoclinic, P 21 /n

  • a = 10.683 (2) Å

  • b = 9.905 (2) Å

  • c = 13.698 (3) Å

  • β = 105.05 (3)°

  • V = 1399.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf-Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.971, Tmax = 0.980

  • 2647 measured reflections

  • 2508 independent reflections

  • 1519 reflections with I > 2σ(I)

  • Rint = 0.051

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.199

  • S = 1.00

  • 2508 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.86 1.98 2.623 (5) 131
N2—H2A⋯O2i 0.86 2.31 2.978 (4) 134
Symmetry code: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of benzoic acid are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C4-C9) and B (C10-C15) are, of course, planar, and they are oriented at a dihedral angle of 78.33 (3)°. The intramolecular N-H···O hydrogen bond (Table 1) results in a nonplanar six-membered ring C (O3/N1/N2/C6/C7/H2A), having total puckering amplitude, QT, of 0.131 (2) Å, flattened-boat conformation [ϕ = 140.37 (3)° and θ = 75.09 (4)°] (Cremer & Pople, 1975).

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contacts between the phenyl rings and the phenyl and the benzene rings, Cg1—Cg1i and Cg1—Cg2ii [symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x - 1/2, 1/2 - y, z - 1/2, where Cg1 and Cg2 are centroids of the rings A (C4-C6) and B (C10-C15), respectively] may further stabilize the structure, with centroid-centroid distances of 3.841 (3) Å and 3.961 (3) Å.

Related literature top

For bond-length data, see: Allen et al. (1987). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

For the preparation of the title compound, ethyl 4-chloro-3-nitrobenzoate (5.0 g, 0.022 mol) was heated in fresh distilled aniline (10 ml) for 18 h at 393 K, and then ethanol (50 ml) was added, at room temperature. The yellow precipitate was sucked, washed with cold ethanol (2 X 20 ml), and then dried (yield; 4.7 g, 75%). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Ethyl 4-anilino-3-nitrobenzoate top
Crystal data top
C15H14N2O4F(000) = 600
Mr = 286.28Dx = 1.358 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 10.683 (2) Åθ = 10–13°
b = 9.905 (2) ŵ = 0.10 mm1
c = 13.698 (3) ÅT = 294 K
β = 105.05 (3)°Block, colorless
V = 1399.7 (5) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
1519 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 25.2°, θmin = 2.2°
ω/2θ scansh = 1212
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.971, Tmax = 0.980l = 016
2647 measured reflections3 standard reflections every 120 min
2508 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.050P)2 + 3.4P]
where P = (Fo2 + 2Fc2)/3
2508 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C15H14N2O4V = 1399.7 (5) Å3
Mr = 286.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.683 (2) ŵ = 0.10 mm1
b = 9.905 (2) ÅT = 294 K
c = 13.698 (3) Å0.30 × 0.20 × 0.20 mm
β = 105.05 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1519 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.051
Tmin = 0.971, Tmax = 0.9803 standard reflections every 120 min
2647 measured reflections intensity decay: none
2508 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.00Δρmax = 0.31 e Å3
2508 reflectionsΔρmin = 0.32 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL refle (Sheldrick, 2008)ctions. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0229 (3)0.1219 (3)0.2353 (2)0.0602 (9)
O20.1935 (2)0.0076 (3)0.2291 (2)0.0605 (8)
O30.0506 (3)0.4222 (3)0.1083 (3)0.0705 (10)
O40.1353 (3)0.3433 (4)0.0297 (3)0.0852 (12)
N10.0155 (3)0.3404 (4)0.0480 (3)0.0560 (9)
N20.2640 (3)0.2968 (4)0.1003 (2)0.0523 (9)
H2A0.23210.36250.12710.063*
C10.0290 (5)0.2946 (6)0.3560 (4)0.0943 (19)
H1A0.08360.34710.40920.141*
H1B0.03280.24550.38200.141*
H1C0.01590.35350.30270.141*
C20.1084 (4)0.1999 (5)0.3166 (4)0.0683 (14)
H2B0.15410.13990.37000.082*
H2C0.17180.24860.29090.082*
C30.0774 (4)0.0183 (4)0.2003 (3)0.0489 (10)
C40.0131 (3)0.0606 (4)0.1202 (3)0.0464 (10)
C50.0350 (3)0.1607 (4)0.0723 (3)0.0452 (10)
H5A0.12380.17640.08970.054*
C60.0450 (3)0.2399 (4)0.0018 (3)0.0434 (9)
C70.1821 (3)0.2191 (4)0.0295 (3)0.0438 (9)
C80.2275 (3)0.1155 (4)0.0203 (3)0.0486 (10)
H8A0.31610.09840.00340.058*
C90.1479 (3)0.0370 (4)0.0934 (3)0.0465 (10)
H9A0.18270.03130.12490.056*
C100.4030 (3)0.2732 (5)0.1322 (3)0.0526 (11)
C110.4831 (4)0.3588 (6)0.1004 (4)0.0754 (15)
H11A0.44870.42840.05590.090*
C120.6166 (5)0.3428 (7)0.1342 (5)0.0907 (19)
H12A0.67220.40120.11270.109*
C130.6650 (4)0.2397 (7)0.1995 (5)0.096 (2)
H13A0.75430.22800.22190.115*
C140.5848 (4)0.1536 (6)0.2324 (4)0.0854 (18)
H14A0.61990.08410.27680.103*
C150.4501 (4)0.1691 (5)0.1999 (4)0.0654 (13)
H15B0.39440.11220.22260.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0423 (16)0.0602 (19)0.0576 (18)0.0073 (14)0.0236 (13)0.0105 (15)
O20.0306 (14)0.075 (2)0.0604 (18)0.0033 (14)0.0167 (12)0.0023 (16)
O30.0482 (17)0.067 (2)0.080 (2)0.0093 (16)0.0131 (16)0.0220 (18)
O40.0283 (15)0.115 (3)0.104 (3)0.0123 (17)0.0021 (16)0.016 (2)
N10.0367 (18)0.069 (2)0.056 (2)0.0118 (18)0.0003 (16)0.0016 (19)
N20.0263 (16)0.066 (2)0.056 (2)0.0001 (15)0.0046 (14)0.0167 (18)
C10.090 (4)0.092 (4)0.082 (4)0.013 (3)0.013 (3)0.026 (3)
C20.057 (3)0.068 (3)0.061 (3)0.013 (2)0.018 (2)0.017 (3)
C30.040 (2)0.053 (3)0.042 (2)0.0083 (19)0.0115 (17)0.009 (2)
C40.0278 (18)0.052 (2)0.045 (2)0.0041 (17)0.0165 (16)0.0055 (19)
C50.0262 (18)0.052 (2)0.046 (2)0.0026 (17)0.0117 (16)0.0101 (19)
C60.0299 (18)0.053 (2)0.041 (2)0.0049 (17)0.0023 (16)0.0030 (18)
C70.0240 (17)0.049 (2)0.048 (2)0.0009 (17)0.0090 (15)0.0001 (19)
C80.0233 (17)0.060 (3)0.053 (2)0.0000 (17)0.0071 (16)0.001 (2)
C90.0327 (19)0.052 (2)0.047 (2)0.0006 (17)0.0021 (16)0.0051 (19)
C100.0226 (18)0.068 (3)0.057 (3)0.0039 (19)0.0082 (17)0.023 (2)
C110.047 (3)0.107 (4)0.072 (3)0.015 (3)0.014 (2)0.016 (3)
C120.048 (3)0.118 (5)0.114 (5)0.026 (3)0.036 (3)0.033 (4)
C130.024 (2)0.127 (6)0.122 (5)0.009 (3)0.006 (3)0.064 (5)
C140.039 (3)0.098 (4)0.097 (4)0.016 (3)0.022 (3)0.030 (3)
C150.033 (2)0.059 (3)0.089 (3)0.002 (2)0.013 (2)0.008 (3)
Geometric parameters (Å, º) top
O1—C21.463 (5)C5—C61.387 (5)
O1—C31.329 (5)C5—H5A0.9300
O2—C31.227 (4)C6—C71.429 (5)
N1—O31.239 (4)C7—C81.387 (5)
N1—O41.240 (4)C8—C91.374 (5)
N1—C61.422 (5)C8—H8A0.9300
N2—C71.363 (5)C9—H9A0.9300
N2—C101.454 (4)C10—C111.354 (6)
N2—H2A0.8600C10—C151.390 (6)
C1—C21.458 (7)C11—C121.390 (7)
C1—H1A0.9600C11—H11A0.9300
C1—H1B0.9600C12—C131.367 (9)
C1—H1C0.9600C12—H12A0.9300
C2—H2B0.9700C13—C141.366 (8)
C2—H2C0.9700C13—H13A0.9300
C3—C41.483 (5)C14—C151.400 (6)
C4—C51.360 (6)C14—H14A0.9300
C4—C91.410 (5)C15—H15B0.9300
C3—O1—C2115.9 (3)C5—C6—N1117.2 (3)
O3—N1—O4120.0 (4)C5—C6—C7120.5 (4)
O3—N1—C6120.6 (3)N2—C7—C8121.7 (3)
O4—N1—C6119.4 (4)N2—C7—C6122.1 (4)
C7—N2—C10122.7 (3)C8—C7—C6116.1 (3)
C7—N2—H2A118.7C7—C8—H8A118.4
C10—N2—H2A118.7C9—C8—C7123.2 (3)
C2—C1—H1A109.5C9—C8—H8A118.4
C2—C1—H1B109.5C4—C9—H9A120.3
C2—C1—H1C109.5C8—C9—C4119.5 (4)
H1A—C1—H1B109.5C8—C9—H9A120.3
H1A—C1—H1C109.5C11—C10—C15122.0 (4)
H1B—C1—H1C109.5C11—C10—N2118.9 (4)
O1—C2—H2B110.0C15—C10—N2119.0 (4)
O1—C2—H2C110.0C10—C11—C12120.1 (6)
C1—C2—O1108.3 (4)C10—C11—H11A120.0
C1—C2—H2B110.0C12—C11—H11A120.0
C1—C2—H2C110.0C11—C12—H12A120.5
H2B—C2—H2C108.4C13—C12—C11118.9 (5)
O1—C3—C4114.3 (3)C13—C12—H12A120.5
O2—C3—O1123.1 (4)C12—C13—H13A119.4
O2—C3—C4122.6 (4)C14—C13—C12121.3 (5)
C5—C4—C9118.9 (3)C14—C13—H13A119.4
C5—C4—C3119.0 (3)C13—C14—C15120.5 (6)
C9—C4—C3122.1 (4)C13—C14—H14A119.8
C4—C5—C6121.8 (3)C15—C14—H14A119.8
C4—C5—H5A119.1C10—C15—C14117.2 (5)
C6—C5—H5A119.1C10—C15—H15B121.4
N1—C6—C7122.4 (3)C14—C15—H15B121.4
C3—O1—C2—C1171.2 (4)N1—C6—C7—N21.8 (6)
C2—O1—C3—O24.1 (6)C5—C6—C7—C81.1 (6)
C2—O1—C3—C4178.3 (4)N1—C6—C7—C8178.6 (4)
O2—C3—C4—C53.9 (6)N2—C7—C8—C9178.7 (4)
O1—C3—C4—C5173.7 (4)C6—C7—C8—C90.9 (6)
O2—C3—C4—C9174.8 (4)C7—C8—C9—C40.1 (6)
O1—C3—C4—C97.6 (5)C5—C4—C9—C80.4 (6)
C9—C4—C5—C60.2 (6)C3—C4—C9—C8178.4 (4)
C3—C4—C5—C6178.6 (4)C7—N2—C10—C11106.2 (5)
C4—C5—C6—N1179.1 (4)C7—N2—C10—C1578.1 (5)
C4—C5—C6—C70.6 (6)C15—C10—C11—C121.0 (7)
O3—N1—C6—C5173.7 (4)N2—C10—C11—C12176.6 (4)
O4—N1—C6—C58.2 (6)C10—C11—C12—C130.1 (8)
O3—N1—C6—C76.6 (6)C11—C12—C13—C140.5 (9)
O4—N1—C6—C7171.5 (4)C12—C13—C14—C150.1 (8)
C10—N2—C7—C83.1 (6)C11—C10—C15—C141.6 (7)
C10—N2—C7—C6177.4 (4)N2—C10—C15—C14177.2 (4)
C5—C6—C7—N2178.5 (4)C13—C14—C15—C101.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.861.982.623 (5)131
N2—H2A···O2i0.862.312.978 (4)134
Symmetry code: (i) x1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O4
Mr286.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)10.683 (2), 9.905 (2), 13.698 (3)
β (°) 105.05 (3)
V3)1399.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.971, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
2647, 2508, 1519
Rint0.051
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.199, 1.00
No. of reflections2508
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.32

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.861.982.623 (5)131
N2—H2A···O2i0.862.312.978 (4)134
Symmetry code: (i) x1/2, y1/2, z1/2.
 

Acknowledgements

The authors thank Dr Shan Liu, Nanjing University of Technology, for useful discussions and the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.  CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds