organic compounds
4-Chloro-3-nitrobenzamide
aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China, and bCollege of Life Sciences and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn
In the crystal of the title compound, C7H5ClN2O3, the molecules are linked by N—H⋯O and C—H⋯O hydrogen bonds. The π–π contact between the benzene rings, [centroid–centroid distance = 3.803 (3) Å] may further stabilize the structure.
Related literature
For a related structure, see: Sun et al. (2006). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.
Supporting information
10.1107/S1600536808041342/hk2596sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808041342/hk2596Isup2.hkl
For the preparation of the title compound, 4-chloro-3-nitrobenzoic acid (60.3 g, 0.32 mol) was suspended in thionyl chloride (180 ml) and heated at reflux for 5 h, then concentrated in vacuum as far as possible, the oily substance obtained. Added ice ammonia water (300 ml) to the oil, cooling to room temperature, a precipitate formed, which was collected by filtration and washed with water. Pure title compound was obtained by crystallizing from methanol (Sun et al., 2006). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.
H atoms were positioned geometrically, with N-H = 0.86 (for NH2) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).C7H5ClN2O3 | F(000) = 408 |
Mr = 200.58 | Dx = 1.643 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 8.8490 (18) Å | θ = 10–13° |
b = 7.5470 (15) Å | µ = 0.44 mm−1 |
c = 12.374 (3) Å | T = 294 K |
β = 101.18 (3)° | Block, colorless |
V = 810.7 (3) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 1085 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.061 |
Graphite monochromator | θmax = 25.3°, θmin = 2.6° |
ω/2θ scans | h = −10→10 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→9 |
Tmin = 0.879, Tmax = 0.957 | l = 0→14 |
1555 measured reflections | 3 standard reflections every 120 min |
1459 independent reflections | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.078 | H-atom parameters constrained |
wR(F2) = 0.198 | w = 1/[σ2(Fo2) + (0.060P)2 + 4.5P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
1459 reflections | Δρmax = 0.41 e Å−3 |
112 parameters | Δρmin = −0.51 e Å−3 |
Primary atom site location: structure-invariant direct methods |
C7H5ClN2O3 | V = 810.7 (3) Å3 |
Mr = 200.58 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.8490 (18) Å | µ = 0.44 mm−1 |
b = 7.5470 (15) Å | T = 294 K |
c = 12.374 (3) Å | 0.30 × 0.20 × 0.10 mm |
β = 101.18 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1085 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.061 |
Tmin = 0.879, Tmax = 0.957 | 3 standard reflections every 120 min |
1555 measured reflections | intensity decay: none |
1459 independent reflections |
R[F2 > 2σ(F2)] = 0.078 | 112 parameters |
wR(F2) = 0.198 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.41 e Å−3 |
1459 reflections | Δρmin = −0.51 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl | 0.65545 (17) | 0.0416 (2) | 0.36001 (13) | 0.0618 (5) | |
O1 | 0.7053 (5) | 0.1130 (7) | 0.5888 (4) | 0.0749 (14) | |
O2 | 0.8610 (5) | 0.3068 (6) | 0.6677 (3) | 0.0554 (11) | |
O3 | 1.3178 (4) | 0.4669 (5) | 0.5500 (2) | 0.0390 (9) | |
N1 | 0.8103 (5) | 0.2076 (5) | 0.5896 (3) | 0.0385 (10) | |
N2 | 1.3809 (5) | 0.3507 (7) | 0.3985 (4) | 0.0502 (12) | |
H2B | 1.4701 | 0.4002 | 0.4120 | 0.060* | |
H2C | 1.3546 | 0.2856 | 0.3409 | 0.060* | |
C1 | 0.8373 (6) | 0.1359 (7) | 0.3967 (4) | 0.0378 (11) | |
C2 | 0.9221 (6) | 0.1454 (7) | 0.3143 (4) | 0.0401 (12) | |
H2A | 0.8819 | 0.1004 | 0.2448 | 0.048* | |
C3 | 1.0637 (6) | 0.2201 (7) | 0.3346 (4) | 0.0424 (12) | |
H3A | 1.1188 | 0.2260 | 0.2779 | 0.051* | |
C4 | 1.1312 (5) | 0.2902 (6) | 0.4397 (3) | 0.0295 (10) | |
C5 | 1.0412 (5) | 0.2840 (6) | 0.5196 (3) | 0.0316 (10) | |
H5A | 1.0790 | 0.3319 | 0.5888 | 0.038* | |
C6 | 0.8958 (5) | 0.2076 (6) | 0.4985 (4) | 0.0308 (10) | |
C7 | 1.2837 (6) | 0.3746 (7) | 0.4668 (4) | 0.0435 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.0584 (9) | 0.0679 (10) | 0.0626 (10) | −0.0058 (7) | 0.0208 (7) | −0.0114 (8) |
O1 | 0.079 (3) | 0.088 (3) | 0.074 (3) | −0.027 (3) | 0.057 (3) | −0.007 (3) |
O2 | 0.072 (3) | 0.068 (3) | 0.035 (2) | −0.016 (2) | 0.0311 (18) | −0.007 (2) |
O3 | 0.0454 (18) | 0.052 (2) | 0.0267 (16) | −0.0091 (16) | 0.0254 (14) | −0.0091 (15) |
N1 | 0.054 (2) | 0.038 (2) | 0.036 (2) | 0.000 (2) | 0.0375 (19) | 0.0044 (19) |
N2 | 0.051 (2) | 0.070 (3) | 0.042 (2) | −0.007 (2) | 0.038 (2) | −0.018 (2) |
C1 | 0.049 (3) | 0.035 (3) | 0.035 (2) | 0.008 (2) | 0.020 (2) | 0.004 (2) |
C2 | 0.063 (3) | 0.042 (3) | 0.019 (2) | 0.001 (2) | 0.018 (2) | −0.004 (2) |
C3 | 0.068 (3) | 0.044 (3) | 0.024 (2) | 0.002 (2) | 0.031 (2) | 0.002 (2) |
C4 | 0.043 (2) | 0.030 (2) | 0.022 (2) | −0.0015 (19) | 0.0245 (18) | −0.0009 (18) |
C5 | 0.050 (3) | 0.032 (2) | 0.020 (2) | 0.002 (2) | 0.0234 (18) | −0.0002 (18) |
C6 | 0.046 (2) | 0.028 (2) | 0.027 (2) | 0.0066 (19) | 0.0275 (19) | 0.0056 (18) |
C7 | 0.061 (2) | 0.038 (2) | 0.038 (2) | 0.009 (19) | 0.034 (19) | 0.006 (18) |
Cl—C1 | 1.737 (5) | C1—C6 | 1.377 (7) |
O3—C7 | 1.231 (6) | C2—C3 | 1.352 (7) |
N1—O1 | 1.170 (6) | C2—H2A | 0.9300 |
N1—O2 | 1.236 (5) | C3—C4 | 1.424 (7) |
N1—C6 | 1.474 (5) | C3—H3A | 0.9300 |
N2—C7 | 1.329 (6) | C4—C5 | 1.386 (6) |
N2—H2B | 0.8600 | C4—C7 | 1.471 (7) |
N2—H2C | 0.8600 | C5—C6 | 1.388 (7) |
C1—C2 | 1.380 (6) | C5—H5A | 0.9300 |
O1—N1—O2 | 122.9 (4) | C4—C3—H3A | 118.9 |
O1—N1—C6 | 121.2 (4) | C3—C4—C7 | 124.9 (4) |
O2—N1—C6 | 115.8 (4) | C5—C4—C3 | 116.2 (4) |
C7—N2—H2B | 120.0 | C5—C4—C7 | 118.8 (4) |
C7—N2—H2C | 120.0 | C4—C5—C6 | 121.3 (4) |
H2B—N2—H2C | 120.0 | C4—C5—H5A | 119.3 |
C2—C1—Cl | 115.9 (4) | C6—C5—H5A | 119.3 |
C6—C1—Cl | 124.4 (4) | C1—C6—C5 | 120.4 (4) |
C6—C1—C2 | 119.6 (5) | C1—C6—N1 | 122.8 (4) |
C1—C2—H2A | 119.9 | C5—C6—N1 | 116.8 (4) |
C3—C2—C1 | 120.1 (5) | O3—C7—N2 | 121.7 (5) |
C3—C2—H2A | 119.9 | O3—C7—C4 | 120.0 (4) |
C2—C3—C4 | 122.3 (4) | N2—C7—C4 | 118.3 (5) |
C2—C3—H3A | 118.9 | ||
O1—N1—C6—C1 | 17.6 (7) | C2—C3—C4—C5 | −2.5 (7) |
O2—N1—C6—C1 | −165.6 (5) | C2—C3—C4—C7 | −179.3 (5) |
O1—N1—C6—C5 | −162.2 (5) | C3—C4—C5—C6 | 2.3 (7) |
O2—N1—C6—C5 | 14.6 (6) | C7—C4—C5—C6 | 179.3 (4) |
C6—C1—C2—C3 | 2.0 (8) | C5—C4—C7—O3 | −13.8 (7) |
Cl—C1—C2—C3 | 178.6 (4) | C3—C4—C7—O3 | 163.0 (5) |
C2—C1—C6—C5 | −2.2 (7) | C5—C4—C7—N2 | 167.3 (5) |
Cl—C1—C6—C5 | −178.5 (4) | C3—C4—C7—N2 | −15.9 (8) |
C2—C1—C6—N1 | 178.1 (4) | C4—C5—C6—C1 | 0.0 (7) |
Cl—C1—C6—N1 | 1.8 (7) | C4—C5—C6—N1 | 179.7 (4) |
C1—C2—C3—C4 | 0.4 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···O3i | 0.86 | 2.10 | 2.958 (6) | 177 |
N2—H2C···O2ii | 0.86 | 2.26 | 3.067 (6) | 155 |
C2—H2A···O3iii | 0.93 | 2.42 | 3.331 (6) | 166 |
C5—H5A···O2 | 0.93 | 2.33 | 2.658 (6) | 100 |
Symmetry codes: (i) −x+3, −y+1, −z+1; (ii) x+1/2, −y+1/2, z−1/2; (iii) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C7H5ClN2O3 |
Mr | 200.58 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 294 |
a, b, c (Å) | 8.8490 (18), 7.5470 (15), 12.374 (3) |
β (°) | 101.18 (3) |
V (Å3) | 810.7 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.44 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.879, 0.957 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1555, 1459, 1085 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.078, 0.198, 1.01 |
No. of reflections | 1459 |
No. of parameters | 112 |
No. of restraints | ? |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.51 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···O3i | 0.86 | 2.10 | 2.958 (6) | 177.00 |
N2—H2C···O2ii | 0.86 | 2.26 | 3.067 (6) | 155.00 |
C2—H2A···O3iii | 0.93 | 2.42 | 3.331 (6) | 166.00 |
C5—H5A···O2 | 0.93 | 2.33 | 2.658 (6) | 100.00 |
Symmetry codes: (i) −x+3, −y+1, −z+1; (ii) x+1/2, −y+1/2, z−1/2; (iii) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y. W. & Wang, J. W. (2006). Hua Xue Shi Ji, 28, 124–125. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some derivatives of pyridine are important chemical materials. We report herein the crystal structure of the title compound.
In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar. Atoms Cl, N1 and C7 are 0.021 (3), 0.029 (3) and -0.001 (3) Å away from the plane of the benzene ring. The intramolecular C-H···O hydrogen bond results in the formation of a five-membered ring B (O2/N1/C5/C6/H5A), having envelope conformation with O2 atom displaced by 0.278 (3) Å from the plane of the other ring atoms.
In the crystal structure, intermolecular N-H···O and C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contact between the benzene rings, Cg1—Cg1i [symmetry code: (i) -x, -y, 1 - z, where Cg1 is centroid of the ring A (C1-C6)] may further stabilize the structure, with centroid-centroid distance of 3.803 (3) Å.