organic compounds
4-Chloro-3-nitrobenzonitrile
aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China, and bCollege of Life Sciences and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn
In the title compound, C7H3ClN2O2, the Cl, C and N atoms are coplanar with the aromatic ring. In the weak intermolecular C—H⋯O and C—H⋯N hydrogen bonds link the molecules. The π–π contact between the benzene rings, [centroid–centroid distances = 3.912 (3) Å] may further stabilize the structure.
Related literature
For a related structure, see: Sun & Wang (2006). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.
Supporting information
10.1107/S1600536808041330/hk2597sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808041330/hk2597Isup2.hkl
For the preparation of the title compound, 4-chloro-3-nitrobenzamide (33.9 g, 0.17 mol) was suspended in phosphorus oxychloride (150 ml). The temperature was controlled at 333 K for 6 h, and then it was put into ice water (500 ml). It was filtered and the colorless precipitate was washed (yield; 28.2 g) (Sun et al., 2006). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.
H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003.C7H3ClN2O2 | Z = 2 |
Mr = 182.56 | F(000) = 184 |
Triclinic, P1 | Dx = 1.565 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2260 (14) Å | Cell parameters from 25 reflections |
b = 7.7610 (16) Å | θ = 9–12° |
c = 7.7970 (16) Å | µ = 0.45 mm−1 |
α = 110.27 (3)° | T = 294 K |
β = 91.86 (3)° | Block, colorless |
γ = 107.22 (3)° | 0.30 × 0.20 × 0.10 mm |
V = 387.32 (18) Å3 |
Enraf–Nonius CAD-4 diffractometer | 1000 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.052 |
Graphite monochromator | θmax = 25.3°, θmin = 2.8° |
ω/2θ scans | h = −8→8 |
Absorption correction: ψ scan (North et al., 1968) | k = −9→8 |
Tmin = 0.878, Tmax = 0.957 | l = 0→9 |
1540 measured reflections | 3 standard reflections every 120 min |
1418 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.073 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.182 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.060P)2 + 0.880P] where P = (Fo2 + 2Fc2)/3 |
1418 reflections | (Δ/σ)max < 0.001 |
103 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
C7H3ClN2O2 | γ = 107.22 (3)° |
Mr = 182.56 | V = 387.32 (18) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.2260 (14) Å | Mo Kα radiation |
b = 7.7610 (16) Å | µ = 0.45 mm−1 |
c = 7.7970 (16) Å | T = 294 K |
α = 110.27 (3)° | 0.30 × 0.20 × 0.10 mm |
β = 91.86 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1000 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.052 |
Tmin = 0.878, Tmax = 0.957 | 3 standard reflections every 120 min |
1540 measured reflections | intensity decay: none |
1418 independent reflections |
R[F2 > 2σ(F2)] = 0.073 | 0 restraints |
wR(F2) = 0.182 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.27 e Å−3 |
1418 reflections | Δρmin = −0.33 e Å−3 |
103 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl | 0.08801 (17) | 0.32257 (19) | 0.5711 (2) | 0.0767 (5) | |
O1 | 0.3498 (8) | 0.0413 (6) | 0.7577 (7) | 0.1159 (19) | |
O2 | 0.2991 (5) | 0.0203 (5) | 0.4775 (6) | 0.0819 (12) | |
N1 | 0.3567 (5) | 0.1130 (5) | 0.6413 (6) | 0.0590 (10) | |
N2 | 1.0736 (7) | 0.7724 (7) | 1.0090 (8) | 0.0942 (17) | |
C1 | 0.6103 (7) | 0.7170 (6) | 0.8157 (7) | 0.0652 (12) | |
H1A | 0.6681 | 0.8512 | 0.8556 | 0.077* | |
C2 | 0.4139 (6) | 0.6306 (6) | 0.7290 (7) | 0.0602 (12) | |
H2A | 0.3418 | 0.7057 | 0.7106 | 0.072* | |
C3 | 0.3307 (6) | 0.4305 (6) | 0.6717 (6) | 0.0560 (12) | |
C4 | 0.4384 (6) | 0.3252 (6) | 0.7025 (6) | 0.0502 (11) | |
C5 | 0.6290 (6) | 0.4094 (6) | 0.7883 (6) | 0.0581 (12) | |
H5A | 0.7001 | 0.3352 | 0.8108 | 0.070* | |
C6 | 0.7137 (6) | 0.6118 (6) | 0.8413 (6) | 0.0478 (10) | |
C7 | 0.9133 (7) | 0.7033 (7) | 0.9310 (8) | 0.0718 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.0388 (6) | 0.0651 (8) | 0.1075 (11) | 0.0117 (5) | 0.0161 (6) | 0.0143 (7) |
O1 | 0.187 (5) | 0.048 (2) | 0.111 (4) | 0.028 (3) | 0.076 (3) | 0.031 (2) |
O2 | 0.064 (2) | 0.047 (2) | 0.098 (3) | 0.0060 (16) | 0.015 (2) | −0.007 (2) |
N1 | 0.046 (2) | 0.038 (2) | 0.078 (3) | 0.0103 (16) | 0.027 (2) | 0.005 (2) |
N2 | 0.059 (3) | 0.068 (3) | 0.110 (4) | −0.004 (2) | −0.001 (3) | −0.001 (3) |
C1 | 0.062 (2) | 0.034 (3) | 0.078 (3) | 0.005 (2) | 0.031 (2) | 0.004 (2) |
C2 | 0.046 (2) | 0.048 (3) | 0.079 (3) | 0.018 (2) | 0.022 (2) | 0.011 (2) |
C3 | 0.037 (2) | 0.047 (2) | 0.068 (3) | 0.0102 (19) | 0.027 (2) | 0.003 (2) |
C4 | 0.044 (2) | 0.032 (2) | 0.065 (3) | 0.0098 (17) | 0.033 (2) | 0.0069 (19) |
C5 | 0.043 (2) | 0.042 (2) | 0.071 (3) | 0.0143 (19) | 0.020 (2) | −0.001 (2) |
C6 | 0.047 (2) | 0.039 (2) | 0.053 (2) | 0.0128 (18) | 0.0204 (19) | 0.0112 (18) |
C7 | 0.050 (3) | 0.048 (3) | 0.088 (4) | 0.004 (2) | 0.016 (3) | 0.001 (3) |
Cl—C3 | 1.726 (4) | C4—C3 | 1.354 (6) |
N1—O1 | 1.213 (6) | C4—C5 | 1.370 (6) |
N1—O2 | 1.214 (5) | C5—C6 | 1.406 (6) |
C1—H1A | 0.9300 | C5—H5A | 0.9300 |
C2—C1 | 1.407 (7) | C6—C1 | 1.316 (6) |
C2—C3 | 1.386 (6) | C6—C7 | 1.434 (7) |
C2—H2A | 0.9300 | C7—N2 | 1.166 (6) |
C4—N1 | 1.466 (5) | ||
O1—N1—O2 | 124.2 (4) | C2—C3—Cl | 118.9 (4) |
O1—N1—C4 | 117.9 (4) | C4—C3—Cl | 121.5 (3) |
O2—N1—C4 | 117.9 (4) | C4—C3—C2 | 119.5 (4) |
C1—C2—H2A | 120.9 | C3—C4—N1 | 121.1 (4) |
C1—C6—C5 | 120.8 (4) | C3—C4—C5 | 122.2 (4) |
C1—C6—C7 | 120.3 (4) | C5—C4—N1 | 116.6 (4) |
C2—C1—H1A | 119.4 | C4—C5—C6 | 117.8 (4) |
C6—C1—C2 | 121.3 (4) | C4—C5—H5A | 121.1 |
C6—C1—H1A | 119.4 | C6—C5—H5A | 121.1 |
C3—C2—C1 | 118.3 (4) | C5—C6—C7 | 118.8 (4) |
C3—C2—H2A | 120.9 | N2—C7—C6 | 176.8 (6) |
C3—C2—C1—C6 | 0.4 (7) | C5—C4—C3—Cl | −177.5 (4) |
C1—C2—C3—C4 | 0.9 (7) | N1—C4—C3—Cl | 3.8 (6) |
C1—C2—C3—Cl | 178.2 (4) | C3—C4—C5—C6 | −1.4 (7) |
C3—C4—N1—O1 | −120.7 (5) | N1—C4—C5—C6 | 177.3 (4) |
C5—C4—N1—O1 | 60.6 (6) | C4—C5—C6—C1 | 2.6 (7) |
C3—C4—N1—O2 | 58.9 (5) | C4—C5—C6—C7 | −179.8 (4) |
C5—C4—N1—O2 | −119.8 (5) | C5—C6—C1—C2 | −2.1 (7) |
C5—C4—C3—C2 | −0.3 (7) | C7—C6—C1—C2 | −179.6 (5) |
N1—C4—C3—C2 | −179.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O1i | 0.93 | 2.48 | 3.288 (7) | 145 |
C5—H5A···N2ii | 0.93 | 2.61 | 3.497 (7) | 159 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C7H3ClN2O2 |
Mr | 182.56 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 7.2260 (14), 7.7610 (16), 7.7970 (16) |
α, β, γ (°) | 110.27 (3), 91.86 (3), 107.22 (3) |
V (Å3) | 387.32 (18) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.45 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.878, 0.957 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1540, 1418, 1000 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.073, 0.182, 1.00 |
No. of reflections | 1418 |
No. of parameters | 103 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.33 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003.
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O1i | 0.9300 | 2.4800 | 3.288 (7) | 145.00 |
C5—H5A···N2ii | 0.9300 | 2.6100 | 3.497 (7) | 159.00 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+2. |
Acknowledgements
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y. W. & Wang, J. W. (2006). Hua Xue Shi Ji, 28, 124–125. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some derivatives of pyridine are important chemical materials. We report herein the crystal structure of the title compound.
In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar. Atoms Cl, C7, N1 and N2 are -0.040 (3), -0.049 (3), 0.005 (3) and 0.036 (3) Å away from the plane of the benzene ring.
In the crystal structure, weak intermolecular C-H···O and C-H···N hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contact between the benzene rings, Cg1—Cg1i [symmetry code: (i) 1 - x, 1 - y, -z, where Cg1 is centroid of the ring A (C1-C6)] may further stabilize the structure, with centroid-centroid distance of 3.912 (3) Å.