organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-3-nitro­benzo­nitrile

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China, and bCollege of Life Sciences and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 4 December 2008; accepted 7 December 2008; online 10 December 2008)

In the title compound, C7H3ClN2O2, the Cl, C and N atoms are coplanar with the aromatic ring. In the crystal structure, weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules. The ππ contact between the benzene rings, [centroid–centroid distances = 3.912 (3) Å] may further stabilize the structure.

Related literature

For a related structure, see: Sun & Wang (2006[Sun, Y. W. & Wang, J. W. (2006). Hua Xue Shi Ji, 28, 124-125.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H3ClN2O2

  • Mr = 182.56

  • Triclinic, [P \overline 1]

  • a = 7.2260 (14) Å

  • b = 7.7610 (16) Å

  • c = 7.7970 (16) Å

  • α = 110.27 (3)°

  • β = 91.86 (3)°

  • γ = 107.22 (3)°

  • V = 387.32 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.878, Tmax = 0.957

  • 1540 measured reflections

  • 1418 independent reflections

  • 1000 reflections with I > 2σ(I)

  • Rint = 0.052

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.182

  • S = 1.00

  • 1418 reflections

  • 103 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.93 2.48 3.288 (7) 145
C5—H5A⋯N2ii 0.93 2.61 3.497 (7) 159
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+1, -z+2.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PLATON[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.].

Supporting information


Comment top

Some derivatives of pyridine are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar. Atoms Cl, C7, N1 and N2 are -0.040 (3), -0.049 (3), 0.005 (3) and 0.036 (3) Å away from the plane of the benzene ring.

In the crystal structure, weak intermolecular C-H···O and C-H···N hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contact between the benzene rings, Cg1—Cg1i [symmetry code: (i) 1 - x, 1 - y, -z, where Cg1 is centroid of the ring A (C1-C6)] may further stabilize the structure, with centroid-centroid distance of 3.912 (3) Å.

Related literature top

For a related structure, see: Sun et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 4-chloro-3-nitrobenzamide (33.9 g, 0.17 mol) was suspended in phosphorus oxychloride (150 ml). The temperature was controlled at 333 K for 6 h, and then it was put into ice water (500 ml). It was filtered and the colorless precipitate was washed (yield; 28.2 g) (Sun et al., 2006). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
4-Chloro-3-nitrobenzonitrile top
Crystal data top
C7H3ClN2O2Z = 2
Mr = 182.56F(000) = 184
Triclinic, P1Dx = 1.565 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2260 (14) ÅCell parameters from 25 reflections
b = 7.7610 (16) Åθ = 9–12°
c = 7.7970 (16) ŵ = 0.45 mm1
α = 110.27 (3)°T = 294 K
β = 91.86 (3)°Block, colorless
γ = 107.22 (3)°0.30 × 0.20 × 0.10 mm
V = 387.32 (18) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1000 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 25.3°, θmin = 2.8°
ω/2θ scansh = 88
Absorption correction: ψ scan
(North et al., 1968)
k = 98
Tmin = 0.878, Tmax = 0.957l = 09
1540 measured reflections3 standard reflections every 120 min
1418 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.060P)2 + 0.880P]
where P = (Fo2 + 2Fc2)/3
1418 reflections(Δ/σ)max < 0.001
103 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C7H3ClN2O2γ = 107.22 (3)°
Mr = 182.56V = 387.32 (18) Å3
Triclinic, P1Z = 2
a = 7.2260 (14) ÅMo Kα radiation
b = 7.7610 (16) ŵ = 0.45 mm1
c = 7.7970 (16) ÅT = 294 K
α = 110.27 (3)°0.30 × 0.20 × 0.10 mm
β = 91.86 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1000 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.052
Tmin = 0.878, Tmax = 0.9573 standard reflections every 120 min
1540 measured reflections intensity decay: none
1418 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
1418 reflectionsΔρmin = 0.33 e Å3
103 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.08801 (17)0.32257 (19)0.5711 (2)0.0767 (5)
O10.3498 (8)0.0413 (6)0.7577 (7)0.1159 (19)
O20.2991 (5)0.0203 (5)0.4775 (6)0.0819 (12)
N10.3567 (5)0.1130 (5)0.6413 (6)0.0590 (10)
N21.0736 (7)0.7724 (7)1.0090 (8)0.0942 (17)
C10.6103 (7)0.7170 (6)0.8157 (7)0.0652 (12)
H1A0.66810.85120.85560.077*
C20.4139 (6)0.6306 (6)0.7290 (7)0.0602 (12)
H2A0.34180.70570.71060.072*
C30.3307 (6)0.4305 (6)0.6717 (6)0.0560 (12)
C40.4384 (6)0.3252 (6)0.7025 (6)0.0502 (11)
C50.6290 (6)0.4094 (6)0.7883 (6)0.0581 (12)
H5A0.70010.33520.81080.070*
C60.7137 (6)0.6118 (6)0.8413 (6)0.0478 (10)
C70.9133 (7)0.7033 (7)0.9310 (8)0.0718 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0388 (6)0.0651 (8)0.1075 (11)0.0117 (5)0.0161 (6)0.0143 (7)
O10.187 (5)0.048 (2)0.111 (4)0.028 (3)0.076 (3)0.031 (2)
O20.064 (2)0.047 (2)0.098 (3)0.0060 (16)0.015 (2)0.007 (2)
N10.046 (2)0.038 (2)0.078 (3)0.0103 (16)0.027 (2)0.005 (2)
N20.059 (3)0.068 (3)0.110 (4)0.004 (2)0.001 (3)0.001 (3)
C10.062 (2)0.034 (3)0.078 (3)0.005 (2)0.031 (2)0.004 (2)
C20.046 (2)0.048 (3)0.079 (3)0.018 (2)0.022 (2)0.011 (2)
C30.037 (2)0.047 (2)0.068 (3)0.0102 (19)0.027 (2)0.003 (2)
C40.044 (2)0.032 (2)0.065 (3)0.0098 (17)0.033 (2)0.0069 (19)
C50.043 (2)0.042 (2)0.071 (3)0.0143 (19)0.020 (2)0.001 (2)
C60.047 (2)0.039 (2)0.053 (2)0.0128 (18)0.0204 (19)0.0112 (18)
C70.050 (3)0.048 (3)0.088 (4)0.004 (2)0.016 (3)0.001 (3)
Geometric parameters (Å, º) top
Cl—C31.726 (4)C4—C31.354 (6)
N1—O11.213 (6)C4—C51.370 (6)
N1—O21.214 (5)C5—C61.406 (6)
C1—H1A0.9300C5—H5A0.9300
C2—C11.407 (7)C6—C11.316 (6)
C2—C31.386 (6)C6—C71.434 (7)
C2—H2A0.9300C7—N21.166 (6)
C4—N11.466 (5)
O1—N1—O2124.2 (4)C2—C3—Cl118.9 (4)
O1—N1—C4117.9 (4)C4—C3—Cl121.5 (3)
O2—N1—C4117.9 (4)C4—C3—C2119.5 (4)
C1—C2—H2A120.9C3—C4—N1121.1 (4)
C1—C6—C5120.8 (4)C3—C4—C5122.2 (4)
C1—C6—C7120.3 (4)C5—C4—N1116.6 (4)
C2—C1—H1A119.4C4—C5—C6117.8 (4)
C6—C1—C2121.3 (4)C4—C5—H5A121.1
C6—C1—H1A119.4C6—C5—H5A121.1
C3—C2—C1118.3 (4)C5—C6—C7118.8 (4)
C3—C2—H2A120.9N2—C7—C6176.8 (6)
C3—C2—C1—C60.4 (7)C5—C4—C3—Cl177.5 (4)
C1—C2—C3—C40.9 (7)N1—C4—C3—Cl3.8 (6)
C1—C2—C3—Cl178.2 (4)C3—C4—C5—C61.4 (7)
C3—C4—N1—O1120.7 (5)N1—C4—C5—C6177.3 (4)
C5—C4—N1—O160.6 (6)C4—C5—C6—C12.6 (7)
C3—C4—N1—O258.9 (5)C4—C5—C6—C7179.8 (4)
C5—C4—N1—O2119.8 (5)C5—C6—C1—C22.1 (7)
C5—C4—C3—C20.3 (7)C7—C6—C1—C2179.6 (5)
N1—C4—C3—C2179.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.483.288 (7)145
C5—H5A···N2ii0.932.613.497 (7)159
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC7H3ClN2O2
Mr182.56
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.2260 (14), 7.7610 (16), 7.7970 (16)
α, β, γ (°)110.27 (3), 91.86 (3), 107.22 (3)
V3)387.32 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.878, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
1540, 1418, 1000
Rint0.052
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.182, 1.00
No. of reflections1418
No. of parameters103
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.33

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.93002.48003.288 (7)145.00
C5—H5A···N2ii0.93002.61003.497 (7)159.00
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y. W. & Wang, J. W. (2006). Hua Xue Shi Ji, 28, 124–125.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds