organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-bromo-1-(3-chloro­pyridin-2-yl)-1H-pyrazole-5-carboxyl­ate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 16 October 2008; accepted 22 November 2008; online 13 December 2008)

The title compound, C11H9BrClN3O2, is an inter­mediate in the synthesis of Rynaxypyre, a new insecticidal anthranilic diamide used as a potent and selective ryanodine receptor activator. The dihedral angle between the aromatic ring planes is 78.7 (2)°.

Related literature

For the synthetic procedure, see: Lahm et al. (2007[Lahm, G. P., Stevenson, T. M., Selby, T. P., Freudenberger, J. H., Cordova, D., Flexner, L., Bellin, C. A., Dubas, C. M., Smith, B. K., Hughes, K. A., Hollingshaus, J. G., Clark, C. E. & Benner, E. A. (2007). Bioorg. Med. Chem. Lett. 17, 6274-6279.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9BrClN3O2

  • Mr = 330.57

  • Orthorhombic, P 21 21 21

  • a = 7.404 (2) Å

  • b = 10.024 (2) Å

  • c = 17.072 (3) Å

  • V = 1267.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.45 mm−1

  • T = 298 (2) K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.339, Tmax = 0.424 (expected range = 0.284–0.355)

  • 2295 measured reflections

  • 1347 independent reflections

  • 959 reflections with I > 2σ(I)

  • Rint = 0.051

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.129

  • S = 1.00

  • 1347 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 15 Friedel pairs

  • Flack parameter: 0.37

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ethyl 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylate is one of the important intermediates in the synthesis of Rynaxypyre, a new insecticidal anthranilic diamide used as a potent and selective ryanodine receptor activator (Lahm et al., 2007).

The molecular structure of (I) is shown in Fig. 1, a full list of geometric parameters is given in the supplementary material. The bond lengths and angles are within normal ranges (Allen et al., 1987). The dihedral angle of the rings A (C1—C5/N1) and B(C9—C11/N2/N3) is measured to 78.7 (2)°.

No obvious intra- or inter-molecular hydrogen bonds were observed in the crystal structure (Fig. 2).

Related literature top

For the synthetic procedure, see: Lahm et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound (I) was synthesized by a method reported in the literature (Lahm et al., 2007). Crystals of the title compound were obtained by dissolving ethyl 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylate (3.3 g, 10.0 mmol) in acetonitrile (60 ml) and evaporating the solvent slowly at room temperature for about 20 d.

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 Å and C—H = 0.93Å for aromatic H, 0.97 Å for CH2 and 0.96 Å for CH3 groups. Hydrogen atoms were constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A drawing of the title molecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I).
Ethyl 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylate top
Crystal data top
C11H9BrClN3O2F(000) = 656
Mr = 330.57Dx = 1.733 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 7.404 (2) Åθ = 9–13°
b = 10.024 (2) ŵ = 3.45 mm1
c = 17.072 (3) ÅT = 298 K
V = 1267.0 (4) Å3Block, colourless
Z = 40.40 × 0.30 × 0.30 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
959 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.339, Tmax = 0.424l = 2020
2295 measured reflections3 standard reflections every 200 reflections
1347 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.063P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
1347 reflectionsΔρmax = 0.33 e Å3
163 parametersΔρmin = 0.42 e Å3
0 restraintsAbsolute structure: Flack (1983), 155 Frieldel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.37
Crystal data top
C11H9BrClN3O2V = 1267.0 (4) Å3
Mr = 330.57Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.404 (2) ŵ = 3.45 mm1
b = 10.024 (2) ÅT = 298 K
c = 17.072 (3) Å0.40 × 0.30 × 0.30 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
959 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.051
Tmin = 0.339, Tmax = 0.4243 standard reflections every 200 reflections
2295 measured reflections intensity decay: 1%
1347 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.129Δρmax = 0.33 e Å3
S = 1.01Δρmin = 0.42 e Å3
1347 reflectionsAbsolute structure: Flack (1983), 155 Frieldel pairs
163 parametersAbsolute structure parameter: 0.37
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.03831 (14)0.07498 (8)0.79256 (5)0.0580 (3)
Cl0.2975 (3)0.5607 (2)0.90139 (15)0.0661 (6)
O10.0029 (10)0.4767 (5)1.0803 (3)0.0645 (19)
N10.2392 (8)0.5697 (7)0.9219 (4)0.0481 (16)
C10.0862 (11)0.6189 (7)0.9087 (5)0.046 (2)
C20.0441 (15)0.7564 (7)0.9030 (4)0.056 (2)
H2A0.13550.81900.89640.067*
N20.0180 (10)0.3292 (5)0.8505 (3)0.0457 (17)
O20.0190 (8)0.2604 (4)1.1121 (3)0.0483 (14)
N30.0260 (10)0.3932 (5)0.9196 (3)0.0442 (16)
C30.1273 (14)0.7949 (8)0.9073 (6)0.059 (2)
H3A0.15640.88480.90270.071*
C40.2629 (11)0.7014 (8)0.9187 (5)0.055 (2)
H4A0.38010.73330.92450.066*
C50.0628 (13)0.5354 (6)0.9191 (4)0.045 (2)
C60.0235 (18)0.1666 (8)1.2393 (5)0.074 (3)
H6A0.03240.18601.29430.111*
H6B0.12180.10991.22410.111*
H6C0.08890.12241.22890.111*
C70.0317 (13)0.2919 (7)1.1945 (4)0.0476 (19)
H7A0.06710.34991.20970.057*
H7B0.14440.33771.20520.057*
C80.0085 (12)0.3603 (7)1.0617 (4)0.046 (2)
C90.0042 (11)0.3108 (6)0.9816 (4)0.041 (2)
C100.0303 (12)0.1880 (6)0.9503 (4)0.0413 (17)
H10A0.05260.10920.97730.050*
C110.0173 (11)0.2032 (6)0.8719 (4)0.0383 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0822 (6)0.0377 (4)0.0539 (4)0.0033 (5)0.0035 (5)0.0055 (4)
Cl0.0537 (13)0.0473 (14)0.0974 (17)0.0016 (12)0.0030 (12)0.0009 (13)
O10.107 (6)0.032 (3)0.054 (3)0.003 (3)0.006 (4)0.004 (2)
N10.047 (4)0.028 (4)0.070 (4)0.004 (4)0.019 (3)0.005 (4)
C10.045 (5)0.034 (4)0.058 (5)0.004 (3)0.002 (4)0.000 (3)
C20.082 (7)0.026 (4)0.059 (5)0.001 (5)0.018 (6)0.003 (3)
N20.067 (5)0.028 (3)0.042 (3)0.003 (3)0.014 (4)0.002 (2)
O20.070 (4)0.035 (3)0.040 (2)0.000 (3)0.004 (3)0.001 (2)
N30.066 (4)0.024 (3)0.043 (3)0.003 (3)0.001 (3)0.001 (2)
C30.071 (7)0.030 (5)0.077 (6)0.009 (5)0.004 (6)0.003 (4)
C40.034 (5)0.052 (5)0.079 (6)0.001 (4)0.002 (5)0.001 (5)
C50.073 (6)0.025 (4)0.036 (4)0.010 (4)0.005 (4)0.007 (3)
C60.113 (9)0.058 (5)0.050 (5)0.006 (6)0.006 (6)0.013 (4)
C70.059 (5)0.043 (4)0.041 (4)0.010 (4)0.006 (4)0.005 (3)
C80.057 (7)0.029 (4)0.052 (4)0.008 (4)0.009 (4)0.001 (3)
C90.052 (6)0.030 (4)0.041 (4)0.001 (4)0.000 (4)0.001 (3)
C100.057 (5)0.019 (3)0.048 (4)0.002 (4)0.003 (4)0.003 (3)
C110.044 (5)0.025 (3)0.046 (4)0.004 (3)0.003 (4)0.001 (3)
Geometric parameters (Å, º) top
Br—C111.874 (6)N3—C51.452 (8)
Cl—C11.675 (8)C3—C41.387 (12)
O1—C81.210 (7)C3—H3A0.9300
N1—C41.334 (9)C4—H4A0.9300
N1—C51.351 (11)C6—C71.472 (9)
C1—C51.396 (11)C6—H6A0.9600
C1—C21.416 (10)C6—H6B0.9600
C2—C31.328 (12)C6—H6C0.9600
C2—H2A0.9300C7—H7A0.9700
N2—C111.340 (8)C7—H7B0.9700
N2—N31.344 (7)C8—C91.454 (10)
O2—C81.323 (8)C9—C101.356 (9)
O2—C71.445 (7)C10—C111.351 (9)
N3—C91.361 (8)C10—H10A0.9300
C4—N1—C5112.2 (6)H6A—C6—H6B109.5
C5—C1—C2114.7 (8)C7—C6—H6C109.5
C5—C1—Cl122.6 (6)H6A—C6—H6C109.5
C2—C1—Cl122.6 (7)H6B—C6—H6C109.5
C3—C2—C1119.3 (9)O2—C7—C6108.5 (6)
C3—C2—H2A120.4O2—C7—H7A110.0
C1—C2—H2A120.4C6—C7—H7A110.0
C11—N2—N3102.7 (5)O2—C7—H7B110.0
C8—O2—C7118.2 (5)C6—C7—H7B110.0
N2—N3—C9112.7 (5)H7A—C7—H7B108.4
N2—N3—C5118.2 (5)O1—C8—O2124.1 (7)
C9—N3—C5129.1 (5)O1—C8—C9125.1 (7)
C2—C3—C4120.2 (8)O2—C8—C9110.8 (6)
C2—C3—H3A119.9C10—C9—N3105.5 (6)
C4—C3—H3A119.9C10—C9—C8132.6 (6)
N1—C4—C3125.4 (8)N3—C9—C8121.9 (6)
N1—C4—H4A117.3C11—C10—C9106.1 (6)
C3—C4—H4A117.3C11—C10—H10A126.9
N1—C5—C1128.0 (6)C9—C10—H10A126.9
N1—C5—N3115.5 (7)N2—C11—C10113.0 (6)
C1—C5—N3116.2 (8)N2—C11—Br117.8 (5)
C7—C6—H6A109.5C10—C11—Br129.2 (5)
C7—C6—H6B109.5
C5—C1—C2—C30.4 (12)C8—O2—C7—C6174.4 (8)
Cl—C1—C2—C3178.2 (8)C7—O2—C8—O12.5 (13)
C11—N2—N3—C90.4 (9)C7—O2—C8—C9177.6 (7)
C11—N2—N3—C5180.0 (7)N2—N3—C9—C100.9 (10)
C1—C2—C3—C41.2 (15)C5—N3—C9—C10179.6 (8)
C5—N1—C4—C34.9 (12)N2—N3—C9—C8177.7 (7)
C2—C3—C4—N13.8 (16)C5—N3—C9—C81.8 (14)
C4—N1—C5—C14.2 (11)O1—C8—C9—C10171.0 (10)
C4—N1—C5—N3177.9 (6)O2—C8—C9—C109.1 (13)
C2—C1—C5—N12.1 (12)O1—C8—C9—N37.1 (14)
Cl—C1—C5—N1176.5 (6)O2—C8—C9—N3172.8 (8)
C2—C1—C5—N3175.8 (6)N3—C9—C10—C110.9 (10)
Cl—C1—C5—N32.8 (10)C8—C9—C10—C11177.4 (9)
N2—N3—C5—N189.5 (9)N3—N2—C11—C100.2 (10)
C9—N3—C5—N191.0 (10)N3—N2—C11—Br179.4 (6)
N2—N3—C5—C185.1 (9)C9—C10—C11—N20.7 (10)
C9—N3—C5—C194.4 (10)C9—C10—C11—Br179.8 (6)

Experimental details

Crystal data
Chemical formulaC11H9BrClN3O2
Mr330.57
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.404 (2), 10.024 (2), 17.072 (3)
V3)1267.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.45
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.339, 0.424
No. of measured, independent and
observed [I > 2σ(I)] reflections
2295, 1347, 959
Rint0.051
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.129, 1.01
No. of reflections1347
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.42
Absolute structureFlack (1983), 155 Frieldel pairs
Absolute structure parameter0.37

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLahm, G. P., Stevenson, T. M., Selby, T. P., Freudenberger, J. H., Cordova, D., Flexner, L., Bellin, C. A., Dubas, C. M., Smith, B. K., Hughes, K. A., Hollingshaus, J. G., Clark, C. E. & Benner, E. A. (2007). Bioorg. Med. Chem. Lett. 17, 6274–6279.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds