organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-2-((1R)-1-{[(R)-(2-chlorophen­yl)(cyclo­pent­yl)meth­yl]amino}prop­yl)phenol

aSchool of Chemistry, Jinan University, 250022, People's Republic of China, bQilu Pharmaceutical Co Ltd, Shandong Provience, 250100, People's Republic of China, and cGraduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
*Correspondence e-mail: yangting365@126.com

(Received 14 November 2008; accepted 10 December 2008; online 13 December 2008)

In the title compound, C21H25Cl2NO, the dihedral angle between the two benzene rings is 33.18 (11)°. The five-membered ring adopts an envelope conformation. There is an intra­molecular O—H⋯N hydrogen bond. In the crystal, mol­ecules are linked by weak N—H⋯Cl hydrogen bonds, forming a helical chain along the c axis.

Related literature

For related literature on amino­phenols, see: Cimarelli et al. (2002[Cimarelli, C., Palmieri, G. & &Volpini, E. (2002). Tetrahedron Asymmetry, 13, 2011-2018.]); Joshi & Malhotra (2003[Joshi, S. N. & Malhotra, S. V. (2003). Tetrahedron Asymmetry, 14, 1763-1766.]); Li et al. (2004[Li, Y., He, B., Qin, B., Feng, X. & Zhang, G. (2004). J. Org. Chem. 69, 7910-7913.]); Puigjaner et al. (1999[Puigjaner, C., Vidal-Ferran, A., Moyano, A., Pericas, M. A., Rieras, M. A. & Riera, A. (1999). J. Org. Chem. 64, 7902-7911.]); Watts et al. (2005[Watts, C. C., Thoniyot, P., Hirayama, L. C., Romano, T. & Singaram, B. (2005). Tetrahedron Asymmetry, 16, 1829-1835.]). For the synthesis, see: Yang et al. (2005[Yang, X.-F., Zhang, G.-Y., Zhang, Y., Zhao, J.-Y. & Wang, X.-B. (2005). Acta Cryst. C61, o262-o264.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25Cl2NO

  • Mr = 378.32

  • Orthorhombic, P 21 21 21

  • a = 10.9802 (17) Å

  • b = 11.5607 (18) Å

  • c = 15.536 (2) Å

  • V = 1972.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 298 (2) K

  • 0.49 × 0.45 × 0.38 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.852, Tmax = 0.882

  • 10332 measured reflections

  • 3647 independent reflections

  • 3266 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 1.03

  • 3647 reflections

  • 231 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1556 Friedel pairs

  • Flack parameter: 0.06 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2i 0.848 (19) 2.913 (13) 3.7023 (18) 156 (2)
O1—H1A⋯N1 0.82 1.93 2.642 (2) 144
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of enantiopure aminophenols that have different functionalities is an important subject of research because compounds of this class are widespread in natural products, show pharmacological activity and have recently found application in asymmetric synthesis as chiral bases, auxiliaries and ligands (Cimarelli et al., 2002). Chiral aminophenols which are similar to amino alcohols have attracted wide attention for the reason that they can be used in catalytic asymmetric reactions (Puigjaner et al., 1999; Li et al., 2004; Watts et al., 2005), which is one of the most active areas of research in organic chemistry (Joshi & Malhotra, 2003). The synthesis of new aminoalkylphenols is therefore of interest because of potential as asymmetric catalysts.

As part of our continuing studies of chiral aminophenols, we now report the crystal structure of the title compound, (I), which was intially prepared to test its asymmetric catalytic activity. These compounds were prepared by conventional condensation of (R)-1-(2-chlorophenyl)-1-cyclopentylmethanamine with 1-(5-chloro-2-hydroxyphenyl)ethanone, followed by reduction using sodium borohydride in a tetrahydrofuran-ethanol (1:1 v/v) mixture. An X-ray study of the title compound, (I), was carried out and the results are presented here. The molecular structure of (I) is shown in Fig. 1.

The molecule has two chiral centres (C7/C10), which have configuration R, R, as shown in Fig. 1. In the molecules of (I), the five-membered rings adopts an envelope conformation. The dihedral angle between the benzene rings is 33.18 (11)°. There is an intramolecular O1—H1A···N1 hydrogen bond (Table 1). Phenol atom O1 acts as a hydrogen bond donor to atom N1, with O1···N1 = 2.647 (2) Å, which indicates a comparatively strong intramolecular hydrogen bond (Table 1); this distance is significantly shorter than the sum (3.07 Å) of the van der Waals radii for N and O atoms. The molecules are linked via N1—H1···Cl2 hydrogen bonds. An interesting feature of the structure is that the N1—H1···Cl2 hydrogen-bond gives rise to a spiral chain of molecules along the c direction. There are no π-π stacking interactions are present in the structure of (I).

Related literature top

For related literature on aminophenols, see: Cimarelli et al. (2002); Joshi & Malhotra (2003); Li et al. (2004); Puigjaner et al. (1999); Watts et al. (2005). For the synthesis, see: Yang et al. (2005).

Experimental top

The title compound were prepared according to the procedure of Yang et al. (2005). (R)-1-(2-chlorophenyl)-1-cyclopentylmethanamine (0.9 mmol) and 1-(5-chloro-2-hydroxyphenyl)propan-1-one (0.9 mmol) were dissolved in methanol (10 ml) and reacted at room temperature for 48 h. After removal of the solvent, NaBH4 (4.5 mmol) was added to the solution in THF/ethanol (1:1 v/v, 20 ml) and stirred at 273 K until the solution became colourless. The solvent was then removed under reduced pressure. Water (10 ml) was added to the residue and 1 N HCl was added dropwise until hydrogen production ceased. The mixture was neutralized with aqueous Na2CO3, then extracted with CHCl3, and the organic layer was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. Further purification was carried out by thin-layer silica-gel chromatography (chloroform) to give a colourless solid (yield 80.5%). Crystals of (I) were grown from a n-hexane solution.

Refinement top

The N-bound H atom was located in a Fourier difference map and was refined with a distance restraint of N—H = 0.86 (1) Å, and with Uiso(H) = 1.2Ueq(N). The O-bound and C-bound H atoms were positioned geometrically (O—H = 0.82 Å and C—H = 0.93–0.98 Å) and were treated as riding, with Uiso(H) = 1.2Ueq (C) or 1.5Ueq(O, methyl C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram of (I), view down the b axis, showing the formation of helical chains through O1—H1A···N1 and N1—H1···Cl2 hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonds have been omitted.
4-Chloro-2-((1R)-1-{[(R)-(2- chlorophenyl)(cyclopentyl)methyl]amino}propyl)phenol top
Crystal data top
C21H25Cl2NOF(000) = 800
Mr = 378.32Dx = 1.274 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4568 reflections
a = 10.9802 (17) Åθ = 2.2–25.5°
b = 11.5607 (18) ŵ = 0.34 mm1
c = 15.536 (2) ÅT = 298 K
V = 1972.1 (5) Å3Block, colourless
Z = 40.49 × 0.45 × 0.38 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3647 independent reflections
Radiation source: fine-focus sealed tube3266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1213
Tmin = 0.852, Tmax = 0.882k = 1313
10332 measured reflectionsl = 1815
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.2043P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3647 reflectionsΔρmax = 0.17 e Å3
231 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 1556 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (6)
Crystal data top
C21H25Cl2NOV = 1972.1 (5) Å3
Mr = 378.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.9802 (17) ŵ = 0.34 mm1
b = 11.5607 (18) ÅT = 298 K
c = 15.536 (2) Å0.49 × 0.45 × 0.38 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3647 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3266 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.882Rint = 0.025
10332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093Δρmax = 0.17 e Å3
S = 1.03Δρmin = 0.20 e Å3
3647 reflectionsAbsolute structure: Flack (1983), 1556 Friedel pairs
231 parametersAbsolute structure parameter: 0.06 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4025 (2)0.9204 (2)0.46157 (14)0.0567 (6)
C20.3358 (3)0.8241 (2)0.43935 (15)0.0695 (7)
H20.35130.78530.38810.083*
C30.2468 (3)0.7864 (2)0.49342 (16)0.0687 (7)
H30.20130.72160.47860.082*
C40.2227 (2)0.84331 (19)0.57058 (15)0.0576 (6)
C50.29329 (17)0.93830 (17)0.59471 (12)0.0442 (5)
C60.38307 (18)0.97536 (19)0.53893 (13)0.0476 (5)
H60.43121.03840.55390.057*
C70.26917 (18)1.00349 (17)0.67807 (13)0.0453 (5)
H70.34371.04390.69550.054*
C80.1659 (2)1.0917 (2)0.66944 (15)0.0621 (6)
H8A0.09171.05090.65420.075*
H8B0.15281.12790.72500.075*
C90.1884 (3)1.1847 (2)0.60364 (17)0.0757 (7)
H9A0.26331.22380.61670.113*
H9B0.12251.23930.60480.113*
H9C0.19371.15060.54750.113*
C100.33131 (17)0.84631 (17)0.77983 (12)0.0420 (4)
H100.35890.79690.73240.050*
C110.27940 (18)0.76780 (18)0.84923 (13)0.0479 (5)
H110.25310.81620.89760.057*
C120.1718 (2)0.6922 (2)0.82169 (16)0.0626 (6)
H12A0.09680.73660.82080.075*
H12B0.18550.65940.76500.075*
C130.1665 (3)0.5979 (3)0.8899 (2)0.0886 (9)
H13A0.11180.62010.93600.106*
H13B0.13760.52610.86490.106*
C140.2942 (2)0.5833 (2)0.92374 (19)0.0737 (7)
H14A0.32610.50800.90810.088*
H14B0.29510.59010.98600.088*
C150.3705 (2)0.67875 (19)0.88315 (15)0.0563 (5)
H15A0.41970.64820.83650.068*
H15B0.42400.71350.92560.068*
C160.44189 (17)0.91271 (16)0.81295 (12)0.0405 (4)
C170.55907 (18)0.89656 (17)0.78285 (13)0.0466 (5)
C180.6565 (2)0.9581 (2)0.81494 (16)0.0596 (6)
H180.73420.94510.79320.071*
C190.6393 (2)1.0384 (2)0.87866 (16)0.0639 (6)
H190.70481.08060.89990.077*
C200.5237 (2)1.0559 (2)0.91091 (15)0.0608 (6)
H200.51121.10940.95470.073*
C210.4275 (2)0.99458 (18)0.87846 (14)0.0522 (5)
H210.35011.00780.90070.063*
Cl10.58898 (6)0.79389 (6)0.70334 (4)0.0724 (2)
Cl20.51106 (6)0.97523 (8)0.39044 (4)0.0820 (2)
N10.23430 (14)0.92140 (16)0.74620 (11)0.0469 (4)
H10.1982 (19)0.9534 (18)0.7882 (11)0.056*
O10.13051 (17)0.80387 (17)0.62012 (11)0.0773 (5)
H1A0.13230.83640.66700.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0571 (12)0.0642 (14)0.0489 (12)0.0175 (12)0.0106 (10)0.0005 (10)
C20.100 (2)0.0584 (14)0.0502 (13)0.0194 (14)0.0232 (14)0.0075 (11)
C30.102 (2)0.0470 (12)0.0576 (14)0.0064 (13)0.0373 (14)0.0001 (12)
C40.0675 (14)0.0481 (11)0.0570 (13)0.0112 (11)0.0277 (11)0.0128 (10)
C50.0439 (10)0.0445 (11)0.0442 (10)0.0005 (9)0.0147 (8)0.0040 (8)
C60.0458 (11)0.0477 (11)0.0491 (11)0.0033 (9)0.0125 (9)0.0017 (9)
C70.0441 (11)0.0458 (11)0.0459 (10)0.0009 (8)0.0084 (8)0.0015 (9)
C80.0641 (14)0.0609 (13)0.0614 (13)0.0163 (12)0.0008 (11)0.0083 (11)
C90.100 (2)0.0566 (14)0.0705 (15)0.0221 (15)0.0023 (15)0.0104 (12)
C100.0412 (10)0.0434 (10)0.0414 (10)0.0026 (8)0.0012 (8)0.0017 (8)
C110.0450 (11)0.0529 (12)0.0457 (11)0.0025 (10)0.0024 (8)0.0038 (9)
C120.0482 (12)0.0691 (14)0.0706 (15)0.0085 (11)0.0056 (10)0.0153 (13)
C130.0688 (16)0.090 (2)0.107 (2)0.0184 (15)0.0105 (16)0.0458 (18)
C140.0747 (16)0.0628 (14)0.0837 (17)0.0079 (14)0.0110 (13)0.0242 (14)
C150.0546 (12)0.0533 (12)0.0610 (13)0.0016 (10)0.0084 (10)0.0108 (10)
C160.0437 (10)0.0379 (9)0.0401 (10)0.0049 (8)0.0029 (8)0.0018 (8)
C170.0470 (11)0.0439 (10)0.0488 (11)0.0027 (9)0.0002 (9)0.0001 (9)
C180.0447 (11)0.0578 (13)0.0763 (15)0.0009 (10)0.0047 (11)0.0011 (12)
C190.0616 (14)0.0532 (13)0.0768 (16)0.0082 (11)0.0235 (12)0.0001 (12)
C200.0738 (16)0.0472 (12)0.0615 (13)0.0045 (12)0.0138 (12)0.0097 (11)
C210.0520 (12)0.0485 (12)0.0562 (12)0.0073 (10)0.0037 (10)0.0068 (9)
Cl10.0588 (3)0.0828 (4)0.0757 (4)0.0041 (3)0.0154 (3)0.0274 (3)
Cl20.0672 (4)0.1215 (6)0.0573 (3)0.0189 (4)0.0075 (3)0.0007 (4)
N10.0392 (9)0.0552 (10)0.0463 (9)0.0065 (8)0.0023 (7)0.0070 (8)
O10.0815 (12)0.0804 (12)0.0701 (11)0.0394 (10)0.0257 (10)0.0165 (10)
Geometric parameters (Å, º) top
C1—C61.376 (3)C11—C121.531 (3)
C1—C21.377 (4)C11—H110.9800
C1—Cl21.745 (3)C12—C131.521 (3)
C2—C31.360 (4)C12—H12A0.9700
C2—H20.9300C12—H12B0.9700
C3—C41.393 (4)C13—C141.507 (4)
C3—H30.9300C13—H13A0.9700
C4—O11.351 (3)C13—H13B0.9700
C4—C51.395 (3)C14—C151.522 (3)
C5—C61.381 (3)C14—H14A0.9700
C5—C71.522 (3)C14—H14B0.9700
C6—H60.9300C15—H15A0.9700
C7—N11.472 (3)C15—H15B0.9700
C7—C81.531 (3)C16—C171.382 (3)
C7—H70.9800C16—C211.399 (3)
C8—C91.504 (3)C17—C181.378 (3)
C8—H8A0.9700C17—Cl11.744 (2)
C8—H8B0.9700C18—C191.370 (3)
C9—H9A0.9600C18—H180.9300
C9—H9B0.9600C19—C201.379 (3)
C9—H9C0.9600C19—H190.9300
C10—N11.470 (2)C20—C211.369 (3)
C10—C111.520 (3)C20—H200.9300
C10—C161.526 (3)C21—H210.9300
C10—H100.9800N1—H10.848 (19)
C11—C151.529 (3)O1—H1A0.8200
C6—C1—C2120.7 (2)C12—C11—H11108.2
C6—C1—Cl2119.43 (19)C13—C12—C11104.11 (19)
C2—C1—Cl2119.89 (19)C13—C12—H12A110.9
C3—C2—C1119.1 (2)C11—C12—H12A110.9
C3—C2—H2120.5C13—C12—H12B110.9
C1—C2—H2120.5C11—C12—H12B110.9
C2—C3—C4121.1 (2)H12A—C12—H12B109.0
C2—C3—H3119.4C14—C13—C12106.7 (2)
C4—C3—H3119.4C14—C13—H13A110.4
O1—C4—C3118.2 (2)C12—C13—H13A110.4
O1—C4—C5121.9 (2)C14—C13—H13B110.4
C3—C4—C5119.8 (2)C12—C13—H13B110.4
C6—C5—C4118.2 (2)H13A—C13—H13B108.6
C6—C5—C7120.31 (17)C13—C14—C15106.6 (2)
C4—C5—C7121.45 (19)C13—C14—H14A110.4
C1—C6—C5121.0 (2)C15—C14—H14A110.4
C1—C6—H6119.5C13—C14—H14B110.4
C5—C6—H6119.5C15—C14—H14B110.4
N1—C7—C5109.75 (16)H14A—C14—H14B108.6
N1—C7—C8107.43 (17)C14—C15—C11105.70 (18)
C5—C7—C8112.60 (16)C14—C15—H15A110.6
N1—C7—H7109.0C11—C15—H15A110.6
C5—C7—H7109.0C14—C15—H15B110.6
C8—C7—H7109.0C11—C15—H15B110.6
C9—C8—C7114.5 (2)H15A—C15—H15B108.7
C9—C8—H8A108.6C17—C16—C21116.28 (18)
C7—C8—H8A108.6C17—C16—C10123.98 (17)
C9—C8—H8B108.6C21—C16—C10119.74 (17)
C7—C8—H8B108.6C18—C17—C16122.04 (19)
H8A—C8—H8B107.6C18—C17—Cl1117.49 (16)
C8—C9—H9A109.5C16—C17—Cl1120.46 (15)
C8—C9—H9B109.5C19—C18—C17120.3 (2)
H9A—C9—H9B109.5C19—C18—H18119.9
C8—C9—H9C109.5C17—C18—H18119.9
H9A—C9—H9C109.5C18—C19—C20119.2 (2)
H9B—C9—H9C109.5C18—C19—H19120.4
N1—C10—C11109.45 (15)C20—C19—H19120.4
N1—C10—C16113.53 (16)C21—C20—C19120.0 (2)
C11—C10—C16111.07 (15)C21—C20—H20120.0
N1—C10—H10107.5C19—C20—H20120.0
C11—C10—H10107.5C20—C21—C16122.1 (2)
C16—C10—H10107.5C20—C21—H21119.0
C10—C11—C15113.65 (17)C16—C21—H21119.0
C10—C11—C12115.59 (17)C10—N1—C7116.59 (15)
C15—C11—C12102.53 (18)C10—N1—H1108.9 (16)
C10—C11—H11108.2C7—N1—H1113.1 (16)
C15—C11—H11108.2C4—O1—H1A109.5
C6—C1—C2—C32.6 (3)C11—C12—C13—C1427.7 (3)
Cl2—C1—C2—C3176.33 (18)C12—C13—C14—C156.6 (3)
C1—C2—C3—C40.2 (3)C13—C14—C15—C1117.1 (3)
C2—C3—C4—O1177.9 (2)C10—C11—C15—C14159.2 (2)
C2—C3—C4—C52.2 (3)C12—C11—C15—C1433.7 (2)
O1—C4—C5—C6177.83 (19)N1—C10—C16—C17122.7 (2)
C3—C4—C5—C62.2 (3)C11—C10—C16—C17113.4 (2)
O1—C4—C5—C70.6 (3)N1—C10—C16—C2158.1 (2)
C3—C4—C5—C7179.43 (19)C11—C10—C16—C2165.8 (2)
C2—C1—C6—C52.6 (3)C21—C16—C17—C180.5 (3)
Cl2—C1—C6—C5176.38 (15)C10—C16—C17—C18179.69 (18)
C4—C5—C6—C10.1 (3)C21—C16—C17—Cl1178.20 (14)
C7—C5—C6—C1177.13 (18)C10—C16—C17—Cl11.0 (3)
C6—C5—C7—N1145.10 (17)C16—C17—C18—C190.0 (3)
C4—C5—C7—N137.7 (2)Cl1—C17—C18—C19178.73 (18)
C6—C5—C7—C895.3 (2)C17—C18—C19—C200.7 (4)
C4—C5—C7—C881.9 (2)C18—C19—C20—C210.9 (4)
N1—C7—C8—C9178.4 (2)C19—C20—C21—C160.4 (3)
C5—C7—C8—C960.7 (3)C17—C16—C21—C200.3 (3)
N1—C10—C11—C15175.01 (17)C10—C16—C21—C20179.5 (2)
C16—C10—C11—C1558.8 (2)C11—C10—N1—C7179.95 (17)
N1—C10—C11—C1256.8 (2)C16—C10—N1—C755.2 (2)
C16—C10—C11—C12177.03 (17)C5—C7—N1—C1071.5 (2)
C10—C11—C12—C13161.7 (2)C8—C7—N1—C10165.80 (17)
C15—C11—C12—C1337.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.85 (2)2.91 (1)3.7023 (18)156 (2)
O1—H1A···N10.821.932.642 (2)144
Symmetry code: (i) x+1/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H25Cl2NO
Mr378.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)10.9802 (17), 11.5607 (18), 15.536 (2)
V3)1972.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.49 × 0.45 × 0.38
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.852, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
10332, 3647, 3266
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.03
No. of reflections3647
No. of parameters231
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.20
Absolute structureFlack (1983), 1556 Friedel pairs
Absolute structure parameter0.06 (6)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.848 (19)2.913 (13)3.7023 (18)156 (2)
O1—H1A···N10.821.932.642 (2)144
Symmetry code: (i) x+1/2, y+2, z+1/2.
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Shandong Province, China (grant No. G0231) and the Foundation of the Education Ministry of China for Returned Students (grant No. G0220) for financial support. The X-ray data were collected at Shandong Normal University, China.

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimarelli, C., Palmieri, G. & &Volpini, E. (2002). Tetrahedron Asymmetry, 13, 2011–2018.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJoshi, S. N. & Malhotra, S. V. (2003). Tetrahedron Asymmetry, 14, 1763–1766.  Web of Science CrossRef CAS Google Scholar
First citationLi, Y., He, B., Qin, B., Feng, X. & Zhang, G. (2004). J. Org. Chem. 69, 7910–7913.  CrossRef PubMed CAS Google Scholar
First citationPuigjaner, C., Vidal-Ferran, A., Moyano, A., Pericas, M. A., Rieras, M. A. & Riera, A. (1999). J. Org. Chem. 64, 7902–7911.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatts, C. C., Thoniyot, P., Hirayama, L. C., Romano, T. & Singaram, B. (2005). Tetrahedron Asymmetry, 16, 1829–1835.  Web of Science CrossRef CAS Google Scholar
First citationYang, X.-F., Zhang, G.-Y., Zhang, Y., Zhao, J.-Y. & Wang, X.-B. (2005). Acta Cryst. C61, o262–o264.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds