organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[3-(3-Fluoro­phen­yl)-1,2,4-oxa­diazol-5-yl]propionic acid

aDepto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-540 Recife, Pernambuco, Brazil, and bDepto. de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
*Correspondence e-mail: rms_indu@yahoo.com

(Received 18 November 2008; accepted 10 December 2008; online 17 December 2008)

In the title compound, C11H9FN2O3, the benzene ring is almost coplanar with the heterocyclic ring, making a dihedral angle of 14.0 (1)°. The plane of the carboxyl group is rotated by 14.7 (3)° with respect to the 1,2,4-oxadiazole ring plane. The aliphatic chain exhibits a standard zigzag arrangement. Two inter­molecular O—H⋯O hydrogen bonds between the carboxyl groups related by an inversion centre promote a dimeric structure formation. The dimers are stacked along the crystallographic a axis.

Related literature

For general background, see: Gallardo et al. (2008[Gallardo, H., Cristiano, R., Vieira, A. A., Neves Filho, R. A. W. & Srivastava, R. M. (2008). Synthesis, pp. 605-609.]); Jakopin & Dolenc (2008[Jakopin, Z. & Dolenc, M. S. (2008). Curr. Org. Chem. 12, 850-898.]). For related structures, see: Wang et al. (2006[Wang, H.-B., Liu, Z.-Q., Wang, H.-B. & Yan, X.-C. (2006). Acta Cryst. E62, o4715-o4716.], 2007[Wang, P., Li, H., Kang, S. & Wang, H. (2007). Acta Cryst. E63, o4411.]); Yan, Xing et al. (2006[Yan, X.-C., Xing, Z.-T., Liu, Z.-Q. & Wang, H.-B. (2006). Acta Cryst. E62, o4640-o4641.]); Yan et al. (2006a[Yan, X.-C., Wang, H.-B. & Liu, Z.-Q. (2006a). Acta Cryst. E62, o3007-o3008.],b[Yan, X.-C., Wang, H.-B. & Liu, Z.-Q. (2006b). Acta Cryst. E62, o1302-o1303.]). For the method of preparation, see: Sindkhedkar et al. (2008[Sindkhedkar, M. D., Desai, V. N., Loriya, R. M., Patel, M. V., Trivedi, B. K., Bora, R. O., Diwakar, S. D., Jadhav, G. R. & Pawar, S. S. (2008). PCT Int. Patent Appl. 123pp.]); Srivastava & Seabra (1997[Srivastava, R. M. & Seabra, G. M. (1997). J. Braz. Chem. Soc. 8, 397-405.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9FN2O3

  • Mr = 236.20

  • Triclinic, [P \overline 1]

  • a = 5.055 (1) Å

  • b = 5.905 (1) Å

  • c = 17.967 (1) Å

  • α = 85.769 (5)°

  • β = 87.965 (7)°

  • γ = 81.252 (7)°

  • V = 528.47 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 (2) K

  • 0.50 × 0.33 × 0.07 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2136 measured reflections

  • 2066 independent reflections

  • 1557 reflections with I > 2σ(I)

  • Rint = 0.010

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.06

  • 2066 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O9i 0.97 (3) 1.68 (3) 2.650 (2) 179 (3)
Symmetry code: (i) -x-2, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1996[Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,2,4-Oxadiazoles are well known compounds, which exhibit a large number of biological activities (Jakopin & Dolenc, 2008). Recently, the use of this heterocycle as core for luminescent liquid crystals has also been described (Gallardo et al., 2008).

In the title compound (Fig. 1), the bond lengths and angles are in agreement with the values previously reported for 1,2,4-oxadiazole-containing molecules (Wang et al., 2006, 2007; Yan, Xing et al., 2006; Yan et al., 2006a,b). The torsion angle N2—C3—C11—C16 between the benzene ring attached to C-3 of the 1,2,4-oxadiazole system is -13.6 (2)°, thus, both rings are almost coplanar. The C-5 side-chain containing a carboxylic acid group shows a zigzag arrangement, having the torsion angle C5—C6—C7—C8 of -179.4 (1)°. In addition, the plane of the carboxylic group is also rotated by 14.7 (3)° with respect to the mean plane of the 1,2,4-oxadiazole five-membered ring, but in opposite direction of deviation of the fluoro-phenyl ring. This makes the molecular structure to be slightly twisted. Carboxylic groups are involved in centrosymmetric intermolecular hydrogen-bonding forming a dimeric structure (Fig. 2). The dimmers are perfectly stacked along the crystallographic a axis (Fig. 3).

Related literature top

For general background, see: Gallardo et al. (2008); Jakopin & Dolenc (2008). For related structures, see: Wang et al. (2006, 2007); Yan, Xing et al. (2006); Yan et al. (2006a,b). For the preparation method, see: Sindkhedkar et al. (2008); Srivastava & Seabra (1997).

Experimental top

The title compound was synthesized following the procedure reported earlier for the analogous compounds (Srivastava & Seabra, 1997; Sindkhedkar et al., 2008). A mixture of 3-fluorbenzamidoxime (2.0 mmol) and succinic anhydride (2.2 mmol) was heated in a domestic microwave oven for 10 min. The crude material was purified by column chromatography. Crystallization of pure material from chloroform, from which a suitable crystal was chosen for the X-ray crystallographic experiment.

Refinement top

H atoms attached to C atoms were added at their calculated positions and included in the structure factors calculations, with C—H = 0.93 (aromatic) and 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C). The H atom of carboxylic acid was located in a difference Fourier map and treated as a free atom.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with labeling scheme. Displacement ellipsoids are shown at the 40% probability level.
[Figure 2] Fig. 2. Dimeric strucuture formed by hydrogen bonding.
[Figure 3] Fig. 3. Molecules of (I) stacked along the a axis.
3-[3-(3-Fluorophenyl)-1,2,4-oxadiazol-5-yl]propionic acid top
Crystal data top
C11H9FN2O3Z = 2
Mr = 236.20F(000) = 244
Triclinic, P1Dx = 1.484 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 5.055 (1) ÅCell parameters from 25 reflections
b = 5.905 (1) Åθ = 5.0–18.8°
c = 17.967 (1) ŵ = 0.12 mm1
α = 85.769 (5)°T = 293 K
β = 87.965 (7)°Irregular plate, colorless
γ = 81.252 (7)°0.50 × 0.33 × 0.07 mm
V = 528.47 (14) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.010
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 1.1°
Graphite monochromatorh = 66
ω–2θ scansk = 77
2136 measured reflectionsl = 220
2066 independent reflections3 standard reflections every 200 reflections
1557 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.0868P]
where P = (Fo2 + 2Fc2)/3
2066 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C11H9FN2O3γ = 81.252 (7)°
Mr = 236.20V = 528.47 (14) Å3
Triclinic, P1Z = 2
a = 5.055 (1) ÅMo Kα radiation
b = 5.905 (1) ŵ = 0.12 mm1
c = 17.967 (1) ÅT = 293 K
α = 85.769 (5)°0.50 × 0.33 × 0.07 mm
β = 87.965 (7)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.010
2136 measured reflections3 standard reflections every 200 reflections
2066 independent reflections intensity decay: 1%
1557 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.21 e Å3
2066 reflectionsΔρmin = 0.21 e Å3
158 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.1073 (3)0.0359 (3)0.24108 (9)0.0403 (4)
C50.1973 (3)0.0022 (3)0.32245 (9)0.0412 (4)
C60.4105 (3)0.0731 (3)0.37879 (10)0.0463 (4)
H6A0.34290.02780.42840.056*
H6B0.56160.00640.37220.056*
C70.5043 (3)0.3291 (3)0.37270 (10)0.0476 (4)
H7A0.35290.40860.37880.057*
H7B0.57380.37410.32330.057*
C80.7169 (3)0.4009 (3)0.42998 (9)0.0422 (4)
C110.3022 (3)0.0236 (3)0.18257 (9)0.0415 (4)
C120.2778 (4)0.2461 (3)0.15009 (10)0.0522 (4)
H120.14260.35840.16600.063*
C130.4575 (4)0.2996 (4)0.09349 (11)0.0618 (5)
H130.44130.44850.07150.074*
C140.6588 (4)0.1352 (4)0.06958 (11)0.0594 (5)
H140.77850.17080.03160.071*
C150.6783 (3)0.0823 (3)0.10322 (10)0.0534 (5)
C160.5063 (3)0.1432 (3)0.15924 (10)0.0483 (4)
H160.52560.29230.18110.058*
N20.0849 (3)0.2473 (3)0.26222 (9)0.0552 (4)
N40.0667 (3)0.1270 (2)0.27700 (8)0.0437 (3)
O10.1230 (2)0.2237 (2)0.31750 (7)0.0555 (4)
O90.8599 (2)0.2685 (2)0.45969 (7)0.0547 (3)
O100.7395 (3)0.6168 (2)0.44456 (8)0.0551 (3)
F170.8776 (2)0.2448 (2)0.07982 (7)0.0822 (4)
H100.885 (6)0.660 (5)0.4800 (16)0.102 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0353 (8)0.0424 (8)0.0424 (8)0.0037 (6)0.0030 (7)0.0040 (7)
C50.0372 (8)0.0418 (8)0.0440 (9)0.0059 (6)0.0037 (7)0.0008 (7)
C60.0424 (9)0.0479 (9)0.0476 (9)0.0091 (7)0.0116 (7)0.0011 (7)
C70.0432 (9)0.0465 (9)0.0510 (10)0.0062 (7)0.0137 (7)0.0019 (7)
C80.0359 (8)0.0454 (9)0.0442 (9)0.0060 (7)0.0050 (7)0.0014 (7)
C110.0373 (8)0.0482 (9)0.0402 (8)0.0093 (7)0.0040 (6)0.0076 (7)
C120.0533 (10)0.0504 (10)0.0511 (10)0.0047 (8)0.0130 (8)0.0059 (8)
C130.0734 (13)0.0582 (12)0.0543 (11)0.0167 (10)0.0160 (9)0.0023 (9)
C140.0573 (11)0.0746 (14)0.0489 (10)0.0210 (10)0.0186 (9)0.0092 (9)
C150.0414 (9)0.0669 (12)0.0518 (10)0.0044 (8)0.0114 (8)0.0165 (9)
C160.0445 (9)0.0497 (10)0.0503 (10)0.0057 (7)0.0045 (8)0.0070 (7)
N20.0529 (9)0.0452 (8)0.0633 (10)0.0008 (6)0.0206 (7)0.0004 (7)
N40.0412 (7)0.0429 (7)0.0468 (8)0.0076 (6)0.0108 (6)0.0045 (6)
O10.0560 (7)0.0418 (7)0.0646 (8)0.0033 (5)0.0208 (6)0.0038 (5)
O90.0488 (7)0.0519 (7)0.0636 (8)0.0129 (5)0.0229 (6)0.0052 (6)
O100.0517 (7)0.0471 (7)0.0665 (8)0.0103 (5)0.0198 (6)0.0077 (6)
F170.0635 (7)0.0919 (10)0.0841 (9)0.0081 (6)0.0308 (6)0.0145 (7)
Geometric parameters (Å, º) top
C3—N21.298 (2)C11—C121.387 (2)
C3—N41.382 (2)C11—C161.389 (2)
C3—C111.475 (2)C12—C131.390 (3)
C5—N41.291 (2)C12—H120.9300
C5—O11.338 (2)C13—C141.376 (3)
C5—C61.486 (2)C13—H130.9300
C6—C71.511 (2)C14—C151.370 (3)
C6—H6A0.9700C14—H140.9300
C6—H6B0.9700C15—F171.359 (2)
C7—C81.497 (2)C15—C161.370 (2)
C7—H7A0.9700C16—H160.9300
C7—H7B0.9700N2—O11.4183 (19)
C8—O91.2252 (19)O10—H100.97 (3)
C8—O101.308 (2)
N2—C3—N4114.80 (14)C12—C11—C3119.61 (15)
N2—C3—C11122.14 (14)C16—C11—C3120.18 (15)
N4—C3—C11123.06 (14)C11—C12—C13119.36 (17)
N4—C5—O1113.59 (14)C11—C12—H12120.3
N4—C5—C6129.61 (15)C13—C12—H12120.3
O1—C5—C6116.79 (13)C14—C13—C12120.87 (18)
C5—C6—C7112.30 (13)C14—C13—H13119.6
C5—C6—H6A109.1C12—C13—H13119.6
C7—C6—H6A109.1C15—C14—C13118.25 (17)
C5—C6—H6B109.1C15—C14—H14120.9
C7—C6—H6B109.1C13—C14—H14120.9
H6A—C6—H6B107.9F17—C15—C14118.33 (16)
C8—C7—C6112.31 (14)F17—C15—C16118.68 (18)
C8—C7—H7A109.1C14—C15—C16122.99 (17)
C6—C7—H7A109.1C15—C16—C11118.33 (17)
C8—C7—H7B109.1C15—C16—H16120.8
C6—C7—H7B109.1C11—C16—H16120.8
H7A—C7—H7B107.9C3—N2—O1102.97 (13)
O9—C8—O10123.07 (15)C5—N4—C3102.40 (13)
O9—C8—C7122.54 (15)C5—O1—N2106.23 (12)
O10—C8—C7114.38 (14)C8—O10—H10112.6 (16)
C12—C11—C16120.20 (15)
N4—C5—C6—C78.6 (3)C13—C14—C15—C160.2 (3)
O1—C5—C6—C7172.42 (15)F17—C15—C16—C11179.68 (16)
C5—C6—C7—C8179.36 (14)C14—C15—C16—C110.3 (3)
C6—C7—C8—O923.4 (2)C12—C11—C16—C150.8 (3)
C6—C7—C8—O10157.66 (15)C3—C11—C16—C15178.08 (15)
N2—C3—C11—C12165.28 (17)N4—C3—N2—O10.10 (19)
N4—C3—C11—C1214.0 (2)C11—C3—N2—O1179.48 (14)
N2—C3—C11—C1613.6 (2)O1—C5—N4—C30.79 (18)
N4—C3—C11—C16167.08 (15)C6—C5—N4—C3178.25 (16)
C16—C11—C12—C130.7 (3)N2—C3—N4—C50.54 (19)
C3—C11—C12—C13178.15 (17)C11—C3—N4—C5179.91 (15)
C11—C12—C13—C140.2 (3)N4—C5—O1—N20.77 (19)
C12—C13—C14—C150.3 (3)C6—C5—O1—N2178.40 (14)
C13—C14—C15—F17179.80 (17)C3—N2—O1—C50.37 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O9i0.97 (3)1.68 (3)2.650 (2)179 (3)
Symmetry code: (i) x2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H9FN2O3
Mr236.20
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.055 (1), 5.905 (1), 17.967 (1)
α, β, γ (°)85.769 (5), 87.965 (7), 81.252 (7)
V3)528.47 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.50 × 0.33 × 0.07
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2136, 2066, 1557
Rint0.010
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.06
No. of reflections2066
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O9i0.97 (3)1.68 (3)2.650 (2)179 (3)
Symmetry code: (i) x2, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial assistance. SKMS thanks the Programa Institucional de Bolsas de Iniciação Científica (PIBIC/CNPq) for an Undergraduate fellowship.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGallardo, H., Cristiano, R., Vieira, A. A., Neves Filho, R. A. W. & Srivastava, R. M. (2008). Synthesis, pp. 605–609.  Web of Science CrossRef Google Scholar
First citationJakopin, Z. & Dolenc, M. S. (2008). Curr. Org. Chem. 12, 850–898.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSindkhedkar, M. D., Desai, V. N., Loriya, R. M., Patel, M. V., Trivedi, B. K., Bora, R. O., Diwakar, S. D., Jadhav, G. R. & Pawar, S. S. (2008). PCT Int. Patent Appl. 123pp.  Google Scholar
First citationSpek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, R. M. & Seabra, G. M. (1997). J. Braz. Chem. Soc. 8, 397–405.  CrossRef CAS Google Scholar
First citationWang, P., Li, H., Kang, S. & Wang, H. (2007). Acta Cryst. E63, o4411.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, H.-B., Liu, Z.-Q., Wang, H.-B. & Yan, X.-C. (2006). Acta Cryst. E62, o4715–o4716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, X.-C., Wang, H.-B. & Liu, Z.-Q. (2006a). Acta Cryst. E62, o3007–o3008.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, X.-C., Wang, H.-B. & Liu, Z.-Q. (2006b). Acta Cryst. E62, o1302–o1303.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, X.-C., Xing, Z.-T., Liu, Z.-Q. & Wang, H.-B. (2006). Acta Cryst. E62, o4640–o4641.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds