organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)-3-methyl-N-(5-methyl­thia­zol-2-yl)butanamide

aCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China, and bInstitute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
*Correspondence e-mail: fuchenglin@zj.com

(Received 19 November 2008; accepted 17 December 2008; online 20 December 2008)

In the title compound, C15H17ClN2OS, the thia­zole ring, which is essentially planar with a maximum deviation of 0.044 (3) Å, makes a dihedral angle of 54.76 (8)° with the benzene ring. In the crystal, adjacent molecules related by twofold rotation symmetry are linked by pairs of N—H⋯N hydrogen bonds.

Related literature

For background, see: Holmstead et al. (1978[Holmstead, R. L., Fullmer, D. G. & Ruzo, L. O. (1978). J. Agric. Food Chem. 26, 954-959.]); Forlani (1978[Forlani, L. (1978). J. Chem. Soc. Perkin Trans. 1, pp. 1169-1171.]). For a related structure, see: Zhao et al. (2006[Zhao, J.-H., Cheng, J.-L., Huang, Y.-K. & Zhu, G.-N. (2006). Acta Cryst. E62, o4840-o4841.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17ClN2OS

  • Mr = 308.83

  • Monoclinic, C 2/c

  • a = 14.9649 (6) Å

  • b = 17.6062 (7) Å

  • c = 12.5606 (5) Å

  • β = 99.9482 (11)°

  • V = 3259.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 (1) K

  • 0.41 × 0.33 × 0.26 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.858, Tmax = 0.911

  • 15655 measured reflections

  • 3708 independent reflections

  • 2559 reflections with F2 > 2σ(F2)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.172

  • S = 1.01

  • 3708 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H111⋯N2i 0.86 2.08 2.929 (2) 168
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

2-(4-Chlorophenyl)-3-methylbutanoyl chloride is an intermediate in the synthesis of fenvalerate, an excellent insecticide (Holmstead et al., 1978). 2-Amino-5-methyl-thiazole is another heterocyclic intermediate (Forlani, 1978). As part of our continuing interest in the design and synthesis of new pesticides, we have isolated the title compound, (I), the product of the condensation reaction between 2-(4-chlorophenyl)-3-methylbutanoyl chloride and 5-methyl-2-aminothiazole, as colourless crystals suitable for X-ray analysis.

The molecular structure of (I) is illustrated in Fig. 1. Atoms N2, C10, C11, S1, C9 and N1 are coplanar, the largest deviation being 0.044 (3) Å for N1. As expected, the benzene ring is planar, and atom Cl1 lies only 0.018 (4) Å from the plane defined by the ring C atoms and itself. The angle between these two rings is 54.76 (8)°, smaller than the angle between the thiazole and benzene rings of the compound 2-(4-chlorophenyl)-3-methyl-N-(thiazol-2-yl) butanamide (Zhao et al., 2006). There are N—H···N interactions in the crystal structure, which lead to the formation of hydrogen-bonded dimers (Figs. 2 and 3).

Related literature top

For background, see: Holmstead et al. (1978); Forlani (1978). For a related structure, see: Zhao et al. (2006).

Experimental top

2-Amino-5-methylthiazole (1.14 g, 10 mmol), 4-dimethylaminopyridine (0.12 g), triethylamine (1.31 g) and chloroform (100 ml) were added to a 250 ml round flask. The mixture was stirred and cooled to 273 K, and then 2-(4-chlorophenyl)-3-methylbutanoyl chloride (3.47 g) was added dropwise within 30 min. The mixture was stirred at room temperature for 3 h and then 1% aqueous HCl was added (5 ml). The organic layer was washed with water to a neutral pH and dried over Na2SO4. After being filtered and concentrated, the organic residue was purified by silica-gel column chromatography, eluted with ethyl acetate-petroleum ether-formic acid (10:80:1, v/v/v), to give a white solid (yield 85%, 2.5 g), (I). It was then recrystallized from ethyl acetate-petroleum ether (2:1, v/v) to give colourless blocks (m.p. 460–461 K).

Refinement top

H atoms were included in calculated positions and refined using a riding model, with C—H distances constrained to 0.96 Å for methyl H atoms, 0.93 Å for aryl H atoms and 0.98 Å for the remainder, with N—H distances constrained to 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing arrangement in the unit cell.
[Figure 3] Fig. 3. View showing the N—H···N hydrogen bonding (dashed lines) [symmetry code: (i) 1 - x, y, 3/2 - z].
2-(4-Chlorophenyl)-3-methyl-N-(5-methylthiazol-2-yl)butanamide top
Crystal data top
C15H17ClN2OSF(000) = 1296.00
Mr = 308.83Dx = 1.258 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 10539 reflections
a = 14.9649 (6) Åθ = 3.3–27.4°
b = 17.6062 (7) ŵ = 0.36 mm1
c = 12.5606 (5) ÅT = 298 K
β = 99.9482 (11)°Block, colorless
V = 3259.6 (2) Å30.41 × 0.33 × 0.26 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2559 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.027
ω scansθmax = 27.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1919
Tmin = 0.858, Tmax = 0.911k = 2222
15655 measured reflectionsl = 1615
3708 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.121P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.172(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.27 e Å3
3708 reflectionsΔρmin = 0.29 e Å3
183 parametersExtinction correction: SHELXL
0 restraintsExtinction coefficient: 0.0028 (7)
Crystal data top
C15H17ClN2OSV = 3259.6 (2) Å3
Mr = 308.83Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.9649 (6) ŵ = 0.36 mm1
b = 17.6062 (7) ÅT = 298 K
c = 12.5606 (5) Å0.41 × 0.33 × 0.26 mm
β = 99.9482 (11)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3708 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2559 reflections with F2 > 2σ(F2)
Tmin = 0.858, Tmax = 0.911Rint = 0.027
15655 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.01Δρmax = 0.27 e Å3
3708 reflectionsΔρmin = 0.29 e Å3
183 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02408 (6)0.70387 (4)0.59960 (9)0.1206 (3)
S10.46203 (3)0.39223 (3)0.44117 (3)0.0559 (2)
O10.29216 (10)0.40983 (10)0.48366 (10)0.0696 (4)
N10.40090 (10)0.41256 (9)0.63283 (11)0.0496 (3)
N20.55713 (11)0.40575 (9)0.63079 (12)0.0530 (4)
C10.24241 (12)0.41401 (12)0.65622 (13)0.0534 (4)
C20.18766 (12)0.48677 (12)0.64116 (13)0.0531 (4)
C30.18371 (13)0.53424 (12)0.72811 (17)0.0611 (5)
C40.13313 (17)0.60024 (12)0.7171 (2)0.0739 (6)
C50.08679 (16)0.61988 (13)0.6158 (2)0.0756 (6)
C60.08973 (17)0.57396 (14)0.5282 (2)0.0790 (6)
C70.13902 (13)0.50774 (13)0.54031 (16)0.0667 (5)
C80.31263 (12)0.41250 (11)0.58189 (13)0.0506 (4)
C90.47375 (12)0.40501 (10)0.57886 (13)0.0452 (4)
C100.61571 (13)0.39512 (12)0.55850 (16)0.0583 (5)
C110.57888 (13)0.38625 (12)0.45425 (16)0.0563 (5)
C120.62499 (18)0.37260 (17)0.35901 (19)0.0818 (7)
C130.18427 (14)0.34156 (12)0.63811 (17)0.0646 (5)
C140.24379 (18)0.27066 (14)0.6583 (2)0.0850 (7)
C150.11223 (17)0.34038 (16)0.7103 (2)0.0856 (7)
H10.27510.41310.73090.064*
H30.21600.52130.79570.073*
H40.13030.63090.77660.089*
H60.05830.58770.46050.095*
H70.14000.47650.48080.080*
H100.67820.39420.58120.070*
H130.15350.34090.56260.078*
H1110.41190.41750.70200.060*
H1210.68960.37320.38230.098*
H1220.60810.41180.30620.098*
H1230.60680.32410.32760.098*
H1410.27290.26940.73260.102*
H1420.28900.27190.61260.102*
H1430.20680.22620.64220.102*
H1510.07500.29600.69460.103*
H1520.07520.38500.69720.103*
H1530.14120.33930.78480.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1126 (6)0.0730 (4)0.1748 (9)0.0221 (3)0.0210 (5)0.0226 (5)
S10.0557 (3)0.0783 (3)0.0340 (2)0.0055 (2)0.0085 (2)0.00354 (19)
O10.0527 (8)0.1174 (13)0.0374 (7)0.0055 (7)0.0038 (5)0.0021 (6)
N10.0439 (8)0.0725 (9)0.0325 (7)0.0020 (6)0.0070 (5)0.0005 (6)
N20.0462 (8)0.0767 (10)0.0363 (7)0.0003 (6)0.0074 (6)0.0030 (6)
C10.0451 (10)0.0762 (12)0.0382 (8)0.0032 (8)0.0052 (7)0.0008 (8)
C20.0412 (9)0.0713 (11)0.0466 (9)0.0028 (8)0.0073 (7)0.0040 (8)
C30.0579 (11)0.0705 (12)0.0553 (10)0.0004 (9)0.0109 (8)0.0006 (9)
C40.0711 (15)0.0687 (14)0.0854 (17)0.0069 (10)0.0233 (12)0.0088 (11)
C50.0608 (13)0.0676 (13)0.0987 (19)0.0022 (10)0.0142 (12)0.0143 (13)
C60.0658 (14)0.0892 (17)0.0771 (15)0.0059 (11)0.0015 (11)0.0222 (13)
C70.0589 (11)0.0826 (14)0.0546 (11)0.0032 (10)0.0012 (8)0.0027 (10)
C80.0454 (9)0.0673 (11)0.0388 (9)0.0019 (7)0.0060 (7)0.0025 (7)
C90.0487 (9)0.0531 (9)0.0338 (7)0.0006 (6)0.0071 (6)0.0013 (6)
C100.0463 (10)0.0830 (14)0.0472 (10)0.0028 (8)0.0127 (8)0.0056 (8)
C110.0564 (11)0.0683 (11)0.0465 (10)0.0072 (8)0.0159 (8)0.0059 (8)
C120.0754 (15)0.118 (2)0.0586 (12)0.0162 (14)0.0299 (11)0.0212 (13)
C130.0569 (11)0.0775 (13)0.0589 (11)0.0026 (9)0.0083 (9)0.0043 (10)
C140.0848 (17)0.0730 (15)0.0990 (19)0.0032 (12)0.0214 (14)0.0015 (13)
C150.0702 (15)0.0908 (17)0.1022 (19)0.0038 (12)0.0331 (13)0.0192 (14)
Geometric parameters (Å, º) top
Cl1—C51.744 (2)C13—C141.529 (3)
S1—C91.7227 (17)C13—C151.524 (3)
S1—C111.731 (2)N1—H1110.860
O1—C81.220 (2)C1—H10.980
N1—C81.365 (2)C3—H30.930
N1—C91.386 (2)C4—H40.930
N2—C91.304 (2)C6—H60.930
N2—C101.380 (2)C7—H70.930
C1—C21.515 (2)C10—H100.930
C1—C81.522 (2)C12—H1210.960
C1—C131.539 (2)C12—H1220.960
C2—C31.385 (2)C12—H1230.960
C2—C71.397 (2)C13—H130.980
C3—C41.381 (3)C14—H1410.960
C4—C51.384 (3)C14—H1420.960
C5—C61.372 (3)C14—H1430.960
C6—C71.374 (3)C15—H1510.960
C10—C111.339 (2)C15—H1520.960
C11—C121.500 (3)C15—H1530.960
C9—S1—C1189.24 (9)C13—C1—H1107.7
C8—N1—C9123.37 (14)C2—C3—H3119.1
C9—N2—C10109.35 (15)C4—C3—H3119.1
C2—C1—C8110.74 (16)C3—C4—H4120.6
C2—C1—C13113.75 (15)C5—C4—H4120.6
C8—C1—C13109.12 (16)C5—C6—H6119.9
C1—C2—C3120.52 (15)C7—C6—H6119.9
C1—C2—C7121.50 (17)C2—C7—H7119.7
C3—C2—C7117.97 (19)C6—C7—H7119.7
C2—C3—C4121.75 (19)N2—C10—H10121.4
C3—C4—C5118.8 (2)C11—C10—H10121.4
Cl1—C5—C4119.5 (2)C11—C12—H121109.5
Cl1—C5—C6119.8 (2)C11—C12—H122109.5
C4—C5—C6120.6 (2)C11—C12—H123109.5
C5—C6—C7120.1 (2)H121—C12—H122109.5
C2—C7—C6120.7 (2)H121—C12—H123109.5
O1—C8—N1121.86 (17)H122—C12—H123109.5
O1—C8—C1122.81 (15)C1—C13—H13108.2
N1—C8—C1115.30 (14)C14—C13—H13108.2
S1—C9—N1123.45 (12)C15—C13—H13108.2
S1—C9—N2115.22 (14)C13—C14—H141109.5
N1—C9—N2121.32 (15)C13—C14—H142109.5
N2—C10—C11117.29 (18)C13—C14—H143109.5
S1—C11—C10108.91 (16)H141—C14—H142109.5
S1—C11—C12122.03 (14)H141—C14—H143109.5
C10—C11—C12129.06 (19)H142—C14—H143109.5
C1—C13—C14110.73 (18)C13—C15—H151109.5
C1—C13—C15111.30 (18)C13—C15—H152109.5
C14—C13—C15110.0 (2)C13—C15—H153109.5
C8—N1—H111118.3H151—C15—H152109.5
C9—N1—H111118.3H151—C15—H153109.5
C2—C1—H1107.7H152—C15—H153109.5
C8—C1—H1107.7
C9—S1—C11—C100.73 (16)C13—C1—C2—C765.9 (2)
C9—S1—C11—C12178.9 (2)C8—C1—C13—C1457.6 (2)
C11—S1—C9—N1178.04 (16)C8—C1—C13—C15179.67 (16)
C11—S1—C9—N20.70 (15)C13—C1—C8—O160.1 (2)
C8—N1—C9—S11.7 (2)C13—C1—C8—N1118.44 (17)
C8—N1—C9—N2179.66 (17)C1—C2—C3—C4178.9 (2)
C9—N1—C8—O14.1 (2)C1—C2—C7—C6180.0 (2)
C9—N1—C8—C1174.50 (16)C3—C2—C7—C60.7 (3)
C9—N2—C10—C110.2 (2)C7—C2—C3—C40.4 (3)
C10—N2—C9—S10.4 (2)C2—C3—C4—C51.3 (3)
C10—N2—C9—N1178.33 (16)C3—C4—C5—Cl1178.89 (19)
C2—C1—C8—O165.9 (2)C3—C4—C5—C61.1 (3)
C2—C1—C8—N1115.61 (17)Cl1—C5—C6—C7179.97 (13)
C8—C1—C2—C3123.34 (19)C4—C5—C6—C70.0 (3)
C8—C1—C2—C757.4 (2)C5—C6—C7—C20.9 (3)
C2—C1—C13—C14178.17 (17)N2—C10—C11—S10.7 (2)
C2—C1—C13—C1555.5 (2)N2—C10—C11—C12178.9 (2)
C13—C1—C2—C3113.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H111···N2i0.862.082.929 (2)168
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H17ClN2OS
Mr308.83
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)14.9649 (6), 17.6062 (7), 12.5606 (5)
β (°) 99.9482 (11)
V3)3259.6 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.41 × 0.33 × 0.26
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.858, 0.911
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
15655, 3708, 2559
Rint0.027
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.172, 1.01
No. of reflections3708
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.29

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H111···N2i0.862.082.929 (2)168
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

The authors are grateful for support from the National Natural Science Foundation of China (No. 30700532) and also thank Professor Jian-Ming Gu for help with the analysis of the crystal data.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationForlani, L. (1978). J. Chem. Soc. Perkin Trans. 1, pp. 1169–1171.  CrossRef Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHolmstead, R. L., Fullmer, D. G. & Ruzo, L. O. (1978). J. Agric. Food Chem. 26, 954–959.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, J.-H., Cheng, J.-L., Huang, Y.-K. & Zhu, G.-N. (2006). Acta Cryst. E62, o4840–o4841.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds