organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o76-o77

(E)-2-[4-(Di­methyl­amino)styr­yl]-1-methyl­quinolinium 4-methyl­benzene­sulfonate monohydrate

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 21 November 2008; accepted 3 December 2008; online 10 December 2008)

In the title compound, C20H21N2+·C7H7O3S·H2O, the cation is essentially planar, as indicated by the dihedral angle of 2.79 (13)° between the quinolinium and the dimethylaminophenyl rings, and exists in the E configuration. The π-conjugated planes of the cation and the anion are inclined to each other at a dihedral angle of 66.95 (12)°. The cation is linked to the anion through C—H⋯O hydrogen bonds and the anion is further linked with the water mol­ecule by O—H⋯O hydrogen bonds, forming a three-mol­ecule unit. These units are arranged in a face-to-face manner into a ribbon-like structure along the b axis. The ribbons are stacked along the c axis. The crystal structure is further stabilized by C—H⋯π inter­actions involving the dimethyl­amino­phenyl and methyl­phenyl rings. A ππ inter­action with a centroid–centroid distance of 3.6074 (19) Å is also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to NLO materials research, see: Dittrich et al. (2003[Dittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). Appl. Surf. Sci. 220, 88-95.]); Nogi et al. (2000[Nogi, K., Anwar, U., Tsuji, K., Duan, X.-M., Okada, S., Oikawa, H., Matsuda, H. & Nakanishi, H. (2000). Nonlinear Optics. 24, 35-40.]); Ogawa et al. (2008[Ogawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836-842.]); Otero et al. (2002[Otero, M., Herranz, M. A., Seoane, C., Martín, N., Garín, J., Orduna, J., Alcalá, R. & Villacampa, B. (2002). Tetrahedron, 58, 7463-7475.]); Sato et al. (1999[Sato, N., Rikukawa, M., Sanui, K. & Ogata, N. (1999). Synth. Met. 101, 132-133.]); Weir et al. (2003[Weir, C. A. M., Hadizad, T., Beaudin, A. M. R. & Wang, Z.-Y. (2003). Tetrahedron Lett. 44, 4697-4700.]); Yang et al. (2007[Yang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Des. 7, 83-86.]). For related structures, see, for example: Adachi et al. (1999[Adachi, H., Takanishi, Y., Yabuzaki, J., Mori, Y. & Sasaki, T. (1999). J. Cryst. Growth, 158/159, 568-571.]); Chantrapromma et al. (2008[Chantrapromma, S., Kobkeatthawin, T., Chanawanno, K., Karalai, C. & Fun, H.-K. (2008). Acta Cryst. E64, o876-o877.]); Ogawa et al. (2008[Ogawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836-842.]); Rahman et al. (2003[Rahman, A. A., Razak, I. A., Fun, H.-K., Saenee, P., Jindawong, B., Chantrapromma, S. & Karalai, C. (2003). Acta Cryst. E59, o1798-o1800.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N2+·C7H7O3S·H2O

  • Mr = 478.60

  • Triclinic, [P \overline 1]

  • a = 10.9739 (5) Å

  • b = 11.1789 (5) Å

  • c = 11.1923 (9) Å

  • α = 97.133 (5)°

  • β = 100.322 (5)°

  • γ = 117.021 (3)°

  • V = 1169.78 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100.0 (1) K

  • 0.24 × 0.19 × 0.08 mm

Data collection
  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.986

  • 17557 measured reflections

  • 5390 independent reflections

  • 3272 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.203

  • S = 1.05

  • 5390 reflections

  • 311 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2 0.90 1.96 2.839 (4) 164
O1W—H2W⋯O1i 0.88 2.01 2.893 (3) 179
C10—H10A⋯O3ii 0.93 2.57 3.460 (4) 162
C17—H17A⋯O3ii 0.93 2.45 3.344 (5) 163
C20—H20A⋯O3ii 0.96 2.33 3.204 (6) 151
C20—H20B⋯O1iii 0.96 2.49 3.388 (4) 156
C26—H26A⋯O2 0.93 2.51 2.884 (5) 104
C7—H7ACg4iv 0.93 2.97 3.615 (4) 128
C23—H23ACg3v 0.93 2.82 3.594 (4) 141
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) -x+1, -y, -z. Cg3 and Cg4 are the centroids of the C12–C17 and C21–C26 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

There has been considerable interest in organic nonlinear optical materials that could be used for applications including telecommunications, optical computing and optical data storage. Organic crystals with extensive conjugated π systems are attractive candidates for nonlinear optic (NLO) studies because of their large hyperpolariability (β) and ease of preparation (Dittrich et al., 2003; Nogi et al., 2000; Ogawa et al., 2008; Otero et al., 2002; Sato et al., 1999; Weir et al., 2003; Yang et al., 2007). 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST) is one of the promising NLO material (Adachi et al., 1999). Previous studies (Dittrich et al., 2003; Nogi et al., 2000; Sato et al., 1999) have shown that the DAST and its analogues exhibit second-order non-linear optical properties. One strategy to enhance the hyperpolariability of the cations is by elongation of its π-conjugation system. Based on these previous studies, we have synthesized the title compound which was designed by increasing the π-conjugate system with the replacement of the cationic pyridinium ring that is present in DAST by the quinolinium ring. The crystal structure of the title compound is reported in this study.

Figure 1 shows the asymmetric unit of the title compound (I) which consists of a C20H21N2+ cation, a C7H7O3S- anion and one H2O molecule. The cation exists in the E configuration with respect to the C10C11 double bond [1.328 (4) Å, the corresponding value is 1.357 (2) Å in Chantrapromma et al., 2008]. The cation molecule is essentially planar as indicated by the dihedral angle between the quinolinium and the dimethylaminophenyl rings being 2.79 (13)° [9.26 (6) ° in Chantrapromma et al., 2008] with the torsion angles C8–C9–C10–C11 = -0.1 (5)° and C10–C11–C12–C17 = 2.4 (5)°. Both methyl groups of dimethylamino moiety are slightly twisted from the mean plane of the attached C12–C17 ring as indicated by the torsion angle C18—N2–C15–C14 = 3.6 (4)° and C19–N2–C15–C16 = -6.3 (4)°. The relative arrangement of cation and anion is shown by the interplanar angles between the mean plane of the 4-methylphenyl ring and those of the quinolinium and dimethylaminophenyl system which are 67.80 (13) and 67.19 (16)°, respectively. Besides the O—H···O hydrogen bonded to water molecule, the atom O2 of the sulfonate also contributed to a weak intramolecular C26—H26A···O2 interaction (Table 1) forming an S(5) ring motif (Bernstein et al., 1995). The bond lengths (Allen et al., 1987) and angles in (I) are in normal ranges and comparable with a related structure (Chantrapromma et al., 2008).

In the crystal packing, all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The cation is linked to the anion by weak C—H···O interactions and the anion is further linked to the water molecule by O—H···O hydrogen bonds, forming a three-molecule unit (Table 1 and Fig. 2). These three-molecule units are arranged in a face-to-face manner into a ribbon-like structure along the b axis and these ribbons are stacked along the c axis (Fig. 2). The crystal structure is further stabilized by C—H···π interactions (Table 1). A ππ interaction with the distance Cg1···Cg2iv = 3.6074 (19) Å [symmetry code: (iv) 1 - x, -y, 1 - z] is observed; Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C1/C6–C9, C1–C6, C12–C17 and C21–C26 rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For background to NLO materials research, see: Dittrich et al. (2003); Nogi et al. (2000); Ogawa et al. (2008); Otero et al. (2002); Sato et al. (1999); Weir et al. (2003); Yang et al. (2007). For related structures, see, for example: Adachi et al. (1999); Chantrapromma et al. (2008); Ogawa et al. (2008); Rahman et al. (2003). Cg3 and Cg4 are the centroids of the C12–C17 and C21–C26 rings, respectively.

Experimental top

(E)-2-[4-(Dimethylamino)styryl]-1-methylpyridinium iodide (compound A) was synthesized according to our previously reported procedure (Chantrapromma et al., 2008). Silver(I) p-toluensulfonate (compound B) was synthesized according to a previous method (Rahman et al., 2003). The title compound was then prepared by mixing compound A (0.20 g, 0.5 mmol) in hot methanol (50 ml) and compound B (0.12 g, 0.5 mmol) in hot methanol (30 ml). The mixture immediately yielded a grey precipitate of silver iodide. After stirring the mixture for 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated yielding a green solid. Green block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from methanol by slow evaporation of the solvent at room temperature a few weeks (m.p. 557–558 K).

Refinement top

All H atoms were placed in calculated positions, with d(O—H) = 0.88–0.90 Å, Uiso(H) = 1.5Ueq(O), d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic and CH, and 0.96 Å, Uiso(H) = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.98 Å from C8 and the deepest hole is located at 0.96 Å from S1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the b axis. The O—H···O and weak C—H···O interactions are drawn as dashed lines.
(E)-2-[4-(Dimethylamino)styryl]-1-methylquinolinium 4-methylbenzenesulfonate monohydrate top
Crystal data top
C20H21N2+·C7H7O3S·H2OZ = 2
Mr = 478.60F(000) = 508
Triclinic, P1Dx = 1.359 Mg m3
Hall symbol: -P 1Melting point = 557–558 K
a = 10.9739 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1789 (5) ÅCell parameters from 5390 reflections
c = 11.1923 (9) Åθ = 1.2–27.5°
α = 97.133 (5)°µ = 0.18 mm1
β = 100.322 (5)°T = 100 K
γ = 117.021 (3)°Block, green
V = 1169.78 (13) Å30.24 × 0.19 × 0.08 mm
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
5390 independent reflections
Radiation source: fine-focus sealed tube3272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 8.33 pixels mm-1θmax = 27.5°, θmin = 1.9°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1414
Tmin = 0.958, Tmax = 0.986l = 1411
17557 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0951P)2 + 0.1631P]
where P = (Fo2 + 2Fc2)/3
5390 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C20H21N2+·C7H7O3S·H2Oγ = 117.021 (3)°
Mr = 478.60V = 1169.78 (13) Å3
Triclinic, P1Z = 2
a = 10.9739 (5) ÅMo Kα radiation
b = 11.1789 (5) ŵ = 0.18 mm1
c = 11.1923 (9) ÅT = 100 K
α = 97.133 (5)°0.24 × 0.19 × 0.08 mm
β = 100.322 (5)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
5390 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3272 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.986Rint = 0.073
17557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.203H-atom parameters constrained
S = 1.05Δρmax = 0.60 e Å3
5390 reflectionsΔρmin = 0.47 e Å3
311 parameters
Special details top

Experimental. The low-temparture data was collected with the Oxford Cryosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16105 (8)0.41169 (9)0.37784 (7)0.0306 (2)
O10.0863 (2)0.4772 (2)0.3214 (2)0.0361 (6)
O20.2576 (3)0.4944 (4)0.4973 (2)0.0784 (11)
O30.0690 (3)0.2712 (3)0.3786 (3)0.0708 (10)
O1W0.2135 (2)0.6205 (2)0.7095 (2)0.0371 (6)
H1W0.21220.56600.64240.056*
H2W0.12270.59180.70090.056*
N10.7361 (3)0.0767 (3)0.5500 (2)0.0286 (6)
N21.1460 (3)0.1954 (3)0.0336 (2)0.0342 (6)
C10.6510 (3)0.0789 (3)0.6300 (3)0.0270 (7)
C20.6415 (3)0.1968 (3)0.6702 (3)0.0331 (7)
H2A0.69280.27750.64530.040*
C30.5566 (3)0.1928 (3)0.7459 (3)0.0343 (8)
H3A0.55170.27220.77280.041*
C40.4776 (3)0.0760 (4)0.7845 (3)0.0335 (8)
H4A0.42000.07700.83590.040*
C50.4840 (3)0.0424 (3)0.7467 (3)0.0332 (8)
H5A0.43110.12180.77260.040*
C60.5721 (3)0.0429 (3)0.6678 (3)0.0283 (7)
C70.5835 (3)0.1616 (3)0.6271 (3)0.0333 (7)
H7A0.53330.24190.65290.040*
C80.6659 (3)0.1590 (3)0.5517 (3)0.0321 (7)
H8A0.67330.23750.52740.039*
C90.7441 (3)0.0373 (3)0.5067 (3)0.0252 (6)
C100.8232 (3)0.0412 (3)0.4199 (3)0.0281 (7)
H10A0.87130.03950.39390.034*
C110.8347 (3)0.1494 (3)0.3726 (3)0.0310 (7)
H11A0.78690.22950.39960.037*
C120.9139 (3)0.1564 (3)0.2832 (3)0.0297 (7)
C130.9132 (3)0.2798 (3)0.2436 (3)0.0335 (7)
H13A0.85990.35600.27330.040*
C140.9879 (3)0.2927 (3)0.1630 (3)0.0304 (7)
H14A0.98450.37720.13940.036*
C151.0705 (3)0.1817 (3)0.1142 (3)0.0265 (7)
C161.0722 (3)0.0549 (3)0.1534 (3)0.0296 (7)
H16A1.12460.02120.12320.035*
C170.9956 (3)0.0444 (3)0.2368 (3)0.0303 (7)
H17A0.99880.03960.26240.036*
C181.1368 (4)0.3274 (4)0.0096 (3)0.0400 (8)
H18A1.16330.35970.06090.060*
H18B1.19980.31720.06170.060*
H18C1.04120.39280.05660.060*
C191.2199 (4)0.0842 (4)0.0251 (3)0.0456 (9)
H19A1.29550.00620.03740.068*
H19B1.15460.05800.06670.068*
H19C1.25840.11500.08490.068*
C200.8178 (4)0.2048 (3)0.5119 (3)0.0373 (8)
H20A0.89890.20510.49070.056*
H20B0.84880.28280.57940.056*
H20C0.75900.21040.44050.056*
C210.2694 (3)0.4028 (3)0.2798 (3)0.0255 (6)
C220.2061 (3)0.3196 (3)0.1602 (3)0.0333 (7)
H22A0.10770.27140.13050.040*
C230.2884 (3)0.3080 (3)0.0850 (3)0.0313 (7)
H23A0.24470.25190.00460.038*
C240.4360 (3)0.3785 (3)0.1271 (3)0.0291 (7)
C250.4974 (3)0.4628 (3)0.2463 (3)0.0300 (7)
H25A0.59580.51150.27590.036*
C260.4160 (3)0.4765 (3)0.3227 (3)0.0286 (7)
H26A0.45950.53490.40210.034*
C270.5253 (4)0.3608 (4)0.0459 (3)0.0370 (8)
H27A0.47630.34030.04040.055*
H27B0.54200.28630.06160.055*
H27C0.61430.44460.06490.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0328 (4)0.0371 (5)0.0331 (4)0.0226 (4)0.0159 (3)0.0132 (4)
O10.0380 (13)0.0384 (13)0.0485 (14)0.0270 (12)0.0196 (11)0.0202 (11)
O20.0542 (18)0.157 (3)0.0318 (15)0.068 (2)0.0054 (13)0.0097 (17)
O30.095 (2)0.0431 (16)0.127 (3)0.0462 (17)0.094 (2)0.0523 (17)
O1W0.0345 (12)0.0385 (14)0.0405 (13)0.0194 (11)0.0115 (11)0.0084 (11)
N10.0282 (14)0.0278 (14)0.0312 (14)0.0141 (12)0.0091 (11)0.0086 (11)
N20.0324 (15)0.0387 (16)0.0352 (15)0.0182 (14)0.0150 (12)0.0091 (13)
C10.0221 (15)0.0381 (18)0.0213 (15)0.0142 (14)0.0073 (12)0.0086 (13)
C20.0332 (18)0.0310 (18)0.0383 (18)0.0153 (15)0.0120 (15)0.0163 (15)
C30.0381 (18)0.0316 (18)0.0392 (19)0.0222 (16)0.0089 (15)0.0096 (15)
C40.0285 (17)0.044 (2)0.0311 (17)0.0186 (16)0.0121 (14)0.0109 (15)
C50.0296 (17)0.0341 (18)0.0315 (17)0.0096 (15)0.0088 (14)0.0161 (14)
C60.0322 (17)0.0255 (16)0.0257 (16)0.0167 (14)0.0004 (13)0.0022 (12)
C70.0331 (17)0.0292 (18)0.0358 (18)0.0116 (15)0.0110 (15)0.0145 (14)
C80.0316 (17)0.0367 (19)0.0280 (16)0.0170 (16)0.0075 (14)0.0070 (14)
C90.0240 (15)0.0229 (16)0.0263 (16)0.0122 (13)0.0002 (12)0.0035 (12)
C100.0259 (16)0.0324 (18)0.0286 (16)0.0153 (15)0.0085 (13)0.0093 (13)
C110.0311 (17)0.0281 (17)0.0328 (17)0.0130 (15)0.0092 (14)0.0084 (14)
C120.0270 (16)0.0349 (18)0.0266 (16)0.0157 (15)0.0045 (13)0.0062 (14)
C130.0283 (17)0.0358 (19)0.0319 (17)0.0125 (15)0.0066 (14)0.0080 (14)
C140.0284 (16)0.0308 (18)0.0344 (17)0.0161 (15)0.0106 (14)0.0065 (14)
C150.0231 (15)0.0303 (17)0.0247 (15)0.0135 (14)0.0040 (12)0.0038 (13)
C160.0258 (16)0.0288 (17)0.0328 (17)0.0123 (14)0.0058 (13)0.0098 (14)
C170.0325 (17)0.0285 (17)0.0297 (17)0.0188 (15)0.0007 (13)0.0008 (13)
C180.040 (2)0.049 (2)0.039 (2)0.0293 (19)0.0136 (16)0.0030 (16)
C190.041 (2)0.060 (3)0.045 (2)0.024 (2)0.0236 (17)0.0249 (19)
C200.0404 (19)0.0348 (19)0.044 (2)0.0187 (17)0.0220 (16)0.0160 (16)
C210.0289 (16)0.0276 (17)0.0267 (15)0.0172 (14)0.0103 (13)0.0113 (13)
C220.0266 (16)0.043 (2)0.0309 (17)0.0165 (16)0.0082 (14)0.0102 (15)
C230.0352 (18)0.0352 (18)0.0227 (16)0.0169 (16)0.0069 (14)0.0065 (13)
C240.0361 (17)0.0287 (17)0.0334 (17)0.0207 (15)0.0148 (14)0.0157 (14)
C250.0222 (15)0.0281 (17)0.0388 (18)0.0102 (14)0.0078 (13)0.0132 (14)
C260.0297 (16)0.0240 (16)0.0303 (16)0.0115 (14)0.0086 (13)0.0063 (13)
C270.0410 (19)0.045 (2)0.042 (2)0.0286 (18)0.0240 (16)0.0208 (16)
Geometric parameters (Å, º) top
S1—O31.433 (3)C12—C171.396 (4)
S1—O21.435 (3)C13—C141.359 (4)
S1—O11.443 (2)C13—H13A0.9300
S1—C211.782 (3)C14—C151.408 (4)
O1W—H1W0.8997C14—H14A0.9300
O1W—H2W0.8784C15—C161.421 (4)
N1—C91.353 (4)C16—C171.392 (4)
N1—C11.411 (4)C16—H16A0.9300
N1—C201.470 (4)C17—H17A0.9300
N2—C151.368 (4)C18—H18A0.9600
N2—C181.446 (4)C18—H18B0.9600
N2—C191.453 (4)C18—H18C0.9600
C1—C21.395 (4)C19—H19A0.9600
C1—C61.409 (4)C19—H19B0.9600
C2—C31.358 (4)C19—H19C0.9600
C2—H2A0.9300C20—H20A0.9600
C3—C41.374 (4)C20—H20B0.9600
C3—H3A0.9300C20—H20C0.9600
C4—C51.375 (5)C21—C221.382 (4)
C4—H4A0.9300C21—C261.385 (4)
C5—C61.423 (4)C22—C231.376 (4)
C5—H5A0.9300C22—H22A0.9300
C6—C71.416 (4)C23—C241.393 (4)
C7—C81.336 (4)C23—H23A0.9300
C7—H7A0.9300C24—C251.382 (4)
C8—C91.451 (4)C24—C271.509 (4)
C8—H8A0.9300C25—C261.385 (4)
C9—C101.423 (4)C25—H25A0.9300
C10—C111.328 (4)C26—H26A0.9300
C10—H10A0.9300C27—H27A0.9600
C11—C121.455 (4)C27—H27B0.9600
C11—H11A0.9300C27—H27C0.9600
C12—C131.392 (4)
O3—S1—O2113.8 (2)C13—C14—H14A119.1
O3—S1—O1113.16 (16)C15—C14—H14A119.1
O2—S1—O1112.01 (18)N2—C15—C14121.4 (3)
O3—S1—C21105.11 (14)N2—C15—C16121.8 (3)
O2—S1—C21105.52 (15)C14—C15—C16116.8 (3)
O1—S1—C21106.33 (13)C17—C16—C15120.1 (3)
H1W—O1W—H2W102.3C17—C16—H16A119.9
C9—N1—C1123.0 (3)C15—C16—H16A119.9
C9—N1—C20119.4 (3)C16—C17—C12121.9 (3)
C1—N1—C20117.6 (2)C16—C17—H17A119.0
C15—N2—C18120.6 (3)C12—C17—H17A119.0
C15—N2—C19120.8 (3)N2—C18—H18A109.5
C18—N2—C19117.9 (3)N2—C18—H18B109.5
C2—C1—C6119.8 (3)H18A—C18—H18B109.5
C2—C1—N1121.8 (3)N2—C18—H18C109.5
C6—C1—N1118.4 (3)H18A—C18—H18C109.5
C3—C2—C1119.4 (3)H18B—C18—H18C109.5
C3—C2—H2A120.3N2—C19—H19A109.5
C1—C2—H2A120.3N2—C19—H19B109.5
C2—C3—C4122.7 (3)H19A—C19—H19B109.5
C2—C3—H3A118.7N2—C19—H19C109.5
C4—C3—H3A118.7H19A—C19—H19C109.5
C3—C4—C5119.6 (3)H19B—C19—H19C109.5
C3—C4—H4A120.2N1—C20—H20A109.5
C5—C4—H4A120.2N1—C20—H20B109.5
C4—C5—C6119.7 (3)H20A—C20—H20B109.5
C4—C5—H5A120.1N1—C20—H20C109.5
C6—C5—H5A120.1H20A—C20—H20C109.5
C1—C6—C7119.2 (3)H20B—C20—H20C109.5
C1—C6—C5118.8 (3)C22—C21—C26119.7 (3)
C7—C6—C5122.0 (3)C22—C21—S1119.5 (2)
C8—C7—C6120.4 (3)C26—C21—S1120.8 (2)
C8—C7—H7A119.8C23—C22—C21120.1 (3)
C6—C7—H7A119.8C23—C22—H22A120.0
C7—C8—C9121.9 (3)C21—C22—H22A120.0
C7—C8—H8A119.0C22—C23—C24121.2 (3)
C9—C8—H8A119.0C22—C23—H23A119.4
N1—C9—C10122.7 (3)C24—C23—H23A119.4
N1—C9—C8116.9 (3)C25—C24—C23117.8 (3)
C10—C9—C8120.4 (3)C25—C24—C27121.3 (3)
C11—C10—C9126.0 (3)C23—C24—C27120.9 (3)
C11—C10—H10A117.0C24—C25—C26121.6 (3)
C9—C10—H10A117.0C24—C25—H25A119.2
C10—C11—C12127.1 (3)C26—C25—H25A119.2
C10—C11—H11A116.4C21—C26—C25119.5 (3)
C12—C11—H11A116.4C21—C26—H26A120.3
C13—C12—C17117.2 (3)C25—C26—H26A120.3
C13—C12—C11119.0 (3)C24—C27—H27A109.5
C17—C12—C11123.8 (3)C24—C27—H27B109.5
C14—C13—C12122.2 (3)H27A—C27—H27B109.5
C14—C13—H13A118.9C24—C27—H27C109.5
C12—C13—H13A118.9H27A—C27—H27C109.5
C13—C14—C15121.9 (3)H27B—C27—H27C109.5
C9—N1—C1—C2178.0 (3)C11—C12—C13—C14178.1 (3)
C20—N1—C1—C21.2 (4)C12—C13—C14—C150.2 (5)
C9—N1—C1—C60.9 (4)C18—N2—C15—C143.6 (4)
C20—N1—C1—C6179.9 (3)C19—N2—C15—C14174.2 (3)
C6—C1—C2—C30.3 (4)C18—N2—C15—C16176.9 (3)
N1—C1—C2—C3179.2 (3)C19—N2—C15—C166.3 (4)
C1—C2—C3—C40.6 (5)C13—C14—C15—N2179.6 (3)
C2—C3—C4—C50.5 (5)C13—C14—C15—C160.1 (4)
C3—C4—C5—C60.2 (5)N2—C15—C16—C17179.1 (3)
C2—C1—C6—C7179.6 (3)C14—C15—C16—C170.4 (4)
N1—C1—C6—C71.5 (4)C15—C16—C17—C120.9 (4)
C2—C1—C6—C50.0 (4)C13—C12—C17—C160.7 (4)
N1—C1—C6—C5178.9 (3)C11—C12—C17—C16178.6 (3)
C4—C5—C6—C10.1 (4)O3—S1—C21—C2253.9 (3)
C4—C5—C6—C7179.5 (3)O2—S1—C21—C22174.5 (3)
C1—C6—C7—C81.3 (4)O1—S1—C21—C2266.3 (3)
C5—C6—C7—C8179.2 (3)O3—S1—C21—C26125.2 (3)
C6—C7—C8—C91.3 (5)O2—S1—C21—C264.6 (3)
C1—N1—C9—C10176.0 (3)O1—S1—C21—C26114.6 (2)
C20—N1—C9—C103.3 (4)C26—C21—C22—C231.4 (5)
C1—N1—C9—C83.3 (4)S1—C21—C22—C23177.7 (2)
C20—N1—C9—C8177.5 (3)C21—C22—C23—C240.2 (5)
C7—C8—C9—N13.5 (4)C22—C23—C24—C251.1 (5)
C7—C8—C9—C10175.8 (3)C22—C23—C24—C27177.6 (3)
N1—C9—C10—C11179.3 (3)C23—C24—C25—C260.6 (4)
C8—C9—C10—C110.1 (5)C27—C24—C25—C26178.1 (3)
C9—C10—C11—C12179.5 (3)C22—C21—C26—C251.9 (4)
C10—C11—C12—C13179.7 (3)S1—C21—C26—C25177.2 (2)
C10—C11—C12—C172.4 (5)C24—C25—C26—C210.9 (4)
C17—C12—C13—C140.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O20.901.962.839 (4)164
O1W—H2W···O1i0.882.012.893 (3)179
C10—H10A···O3ii0.932.573.460 (4)162
C17—H17A···O3ii0.932.453.344 (5)163
C20—H20A···O3ii0.962.333.204 (6)151
C20—H20B···O1iii0.962.493.388 (4)156
C26—H26A···O20.932.512.884 (5)104
C7—H7A···Cg4iv0.932.973.615 (4)128
C23—H23A···Cg3v0.932.823.594 (4)141
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H21N2+·C7H7O3S·H2O
Mr478.60
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.9739 (5), 11.1789 (5), 11.1923 (9)
α, β, γ (°)97.133 (5), 100.322 (5), 117.021 (3)
V3)1169.78 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.24 × 0.19 × 0.08
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.958, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
17557, 5390, 3272
Rint0.073
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.203, 1.05
No. of reflections5390
No. of parameters311
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.47

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O20.901.962.839 (4)164
O1W—H2W···O1i0.882.012.893 (3)179
C10—H10A···O3ii0.932.573.460 (4)162
C17—H17A···O3ii0.932.453.344 (5)163
C20—H20A···O3ii0.962.333.204 (6)151
C20—H20B···O1iii0.962.493.388 (4)156
C26—H26A···O20.932.512.884 (5)104
C7—H7A···Cg4iv0.932.973.615 (4)128
C23—H23A···Cg3v0.932.823.594 (4)141
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y, z.
 

Footnotes

This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of Science in Thailand.

Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors thank the Prince of Songkla University for a research grant and also Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAdachi, H., Takanishi, Y., Yabuzaki, J., Mori, Y. & Sasaki, T. (1999). J. Cryst. Growth, 158/159, 568–571.  Web of Science CrossRef Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Kobkeatthawin, T., Chanawanno, K., Karalai, C. & Fun, H.-K. (2008). Acta Cryst. E64, o876–o877.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). Appl. Surf. Sci. 220, 88–95.  Web of Science CrossRef CAS Google Scholar
First citationNogi, K., Anwar, U., Tsuji, K., Duan, X.-M., Okada, S., Oikawa, H., Matsuda, H. & Nakanishi, H. (2000). Nonlinear Optics. 24, 35–40.  CAS Google Scholar
First citationOgawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836–842.  Web of Science CrossRef CAS Google Scholar
First citationOtero, M., Herranz, M. A., Seoane, C., Martín, N., Garín, J., Orduna, J., Alcalá, R. & Villacampa, B. (2002). Tetrahedron, 58, 7463–7475.  Web of Science CrossRef CAS Google Scholar
First citationRahman, A. A., Razak, I. A., Fun, H.-K., Saenee, P., Jindawong, B., Chantrapromma, S. & Karalai, C. (2003). Acta Cryst. E59, o1798–o1800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSato, N., Rikukawa, M., Sanui, K. & Ogata, N. (1999). Synth. Met. 101, 132–133.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeir, C. A. M., Hadizad, T., Beaudin, A. M. R. & Wang, Z.-Y. (2003). Tetrahedron Lett. 44, 4697–4700.  Web of Science CrossRef CAS Google Scholar
First citationYang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Des. 7, 83–86.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o76-o77
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds