organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Nitro­benzyl­­idene)pentane-2,4-dione

aDepartment of Chemistry and Biology, Xiangfan University, Xiangfan 441053, People's Republic of China
*Correspondence e-mail: wuchuanbing2008@yahoo.com.cn

(Received 9 December 2008; accepted 20 December 2008; online 24 December 2008)

In the title mol­ecule, C12H11NO4, the two acetyl C—C=O planes are inclined to the benzene ring at angles of 18.03 (8) and 80.75 (7)°. In the crystal, adjacent mol­ecules are linked into centrosymmetric dimers by pairs of C—H⋯O inter­actions.

Related literature

For metal-complexes with β-diketones, see: Youngme et al. (2007[Youngme, S., Chotkhun, T., Chaichit, N., van Albada, G. A. & Reedijk, J. (2007). Inorg. Chem. Commun. 10, 843-848.]); Ma et al. (2005[Ma, D.-Z., Wu, Y.-Q. & Zuo, X. (2005). Mater. Lett. 59, 3678-3681.]); Soldatov et al. (2003[Soldatov, D. V., Tinnemans, P., Enright, G. D., Ratcliff, C. I., Diamente, P. R. & Ripmeester, J. A. (2003). Chem. Mater. 15, 3826-3840.]); Hinckley (1969[Hinckley, C. C. (1969). J. Am. Chem. Soc. 91, 5160-5162.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11NO4

  • Mr = 233.22

  • Monoclinic, P 21 /c

  • a = 16.0634 (9) Å

  • b = 5.2470 (3) Å

  • c = 14.9774 (9) Å

  • β = 114.117 (1)°

  • V = 1152.18 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: none

  • 4779 measured reflections

  • 1998 independent reflections

  • 1400 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.171

  • S = 1.07

  • 1998 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.42 3.282 (4) 153
Symmetry code: (i) -x+1, -y-1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

β-Diketone as an excellent chelating group has been widely used in supramolecular chemistry. It can form a variety of complexes with various transition-metals (e.g. Cu, Co, Ni, Mn, Pd, etc.) or rare-earth metals (e.g. Eu, Sm, La, Gd, etc.) (Youngme et al., 2007; Ma et al., 2005). These metal complexes have significant applications in material science or act as chemical shift reagents (Soldatov et al., 2003; Hinckley, 1969). Herein, we prepared and crystallized 3-(3-nitrobenzylidene)pentane-2,4-dione, (I).

The title compound can be considered as an alkene having two CH3C(O)- substituents on one side of the double bond and the (NO2)C6H3– unit substituend on the other. The acetyl group trans to the H substituent is not coplanar with the double bond and the aromatic system as a twist is necessary to avoid crowding with the H atom of the aromatic ring. The molecules are connected mainly by intermolecular C—H···O interactions.

Related literature top

For metal-complexes with β-diketones, see: Youngme et al. (2007); Ma et al. (2005); Soldatov et al. (2003); Hinckley (1969).

Experimental top

Piperidine (0.85 g, 10 mmol) was added to a dimethylformamide solution (30 ml) of acetylacetone (1 ml, 10 mmol) and 3-nitrobenzaldehyde (1.51 g, 10 mmol). The mixture was heated at 413 K for 6 h. The mixture was poured into water (300 ml) and the organic phase was extracted with ethyl acetate. The ethyl acetate extract was dried over sodium sulfate and the solvent removed under reduced pressure to yield the crude product, which was recrystallized from ethanol to afford colourless crystals in 50% yield.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, allowing for free rotation of the methyl groups. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) (methyl C) was applied.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule, showing the atom-labelling scheme. The displacement ellipsoids are drawn at the 30% probability level.
3-(3-Nitrobenzylidene)pentane-2,4-dione top
Crystal data top
C12H11NO4F(000) = 488
Mr = 233.22Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1131 reflections
a = 16.0634 (9) Åθ = 2.7–24.3°
b = 5.2470 (3) ŵ = 0.10 mm1
c = 14.9774 (9) ÅT = 298 K
β = 114.117 (1)°Block, colorless
V = 1152.18 (12) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
1400 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.0°, θmin = 2.7°
ϕ and ω scansh = 1917
4779 measured reflectionsk = 66
1998 independent reflectionsl = 1117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.085P)2 + 0.2322P]
where P = (Fo2 + 2Fc2)/3
1998 reflections(Δ/σ)max = 0.015
156 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H11NO4V = 1152.18 (12) Å3
Mr = 233.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.0634 (9) ŵ = 0.10 mm1
b = 5.2470 (3) ÅT = 298 K
c = 14.9774 (9) Å0.20 × 0.10 × 0.10 mm
β = 114.117 (1)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
1400 reflections with I > 2σ(I)
4779 measured reflectionsRint = 0.048
1998 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
1998 reflectionsΔρmin = 0.17 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37414 (19)0.0732 (5)0.46603 (19)0.0328 (7)
C20.31796 (19)0.1238 (5)0.4642 (2)0.0359 (7)
C30.30722 (19)0.1886 (5)0.54900 (19)0.0348 (7)
C40.3576 (2)0.0531 (6)0.6342 (2)0.0405 (8)
C50.4149 (2)0.1425 (6)0.6345 (2)0.0458 (8)
C60.4239 (2)0.2098 (6)0.5501 (2)0.0399 (8)
C70.2427 (2)0.3821 (5)0.5535 (2)0.0389 (8)
C80.1758 (2)0.5058 (5)0.4812 (2)0.0361 (7)
C90.1551 (2)0.4824 (5)0.3737 (2)0.0374 (7)
C100.0895 (2)0.2825 (6)0.3165 (2)0.0536 (9)
C110.1120 (2)0.6808 (6)0.5006 (2)0.0434 (8)
C120.1252 (3)0.7457 (7)0.6020 (2)0.0606 (10)
H20.28710.21420.40660.043*
H40.35240.09570.69190.049*
H50.44780.22990.69230.055*
H60.46210.34260.54960.048*
H70.24940.42540.61630.047*
H10A0.08080.29200.24920.080*
H10B0.03220.30870.32110.080*
H10C0.11320.11770.34230.080*
H12A0.08310.87740.60040.091*
H12B0.18650.80450.63800.091*
H12C0.11460.59710.63330.091*
O10.34549 (17)0.0057 (5)0.30328 (15)0.0605 (7)
O20.4208 (2)0.3406 (5)0.37212 (17)0.0735 (9)
O30.19108 (17)0.6251 (4)0.33704 (16)0.0612 (7)
O40.04744 (19)0.7640 (5)0.43075 (17)0.0764 (9)
N10.38064 (17)0.1449 (5)0.37404 (18)0.0446 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0375 (16)0.0307 (15)0.0255 (15)0.0020 (13)0.0081 (12)0.0000 (12)
C20.0389 (18)0.0356 (17)0.0271 (15)0.0044 (14)0.0073 (13)0.0059 (13)
C30.0415 (18)0.0329 (16)0.0252 (15)0.0022 (14)0.0086 (13)0.0008 (12)
C40.0454 (19)0.0436 (18)0.0279 (16)0.0054 (16)0.0101 (14)0.0034 (13)
C50.053 (2)0.0437 (19)0.0331 (18)0.0134 (16)0.0098 (15)0.0120 (14)
C60.0411 (18)0.0362 (17)0.0372 (17)0.0087 (14)0.0106 (14)0.0055 (13)
C70.0489 (19)0.0360 (17)0.0276 (15)0.0043 (15)0.0113 (14)0.0002 (13)
C80.0436 (18)0.0282 (15)0.0318 (16)0.0010 (14)0.0106 (13)0.0005 (12)
C90.0459 (19)0.0255 (15)0.0337 (17)0.0109 (14)0.0090 (14)0.0030 (13)
C100.060 (2)0.049 (2)0.0380 (18)0.0040 (17)0.0067 (16)0.0081 (15)
C110.051 (2)0.0351 (17)0.0397 (18)0.0093 (16)0.0144 (16)0.0029 (15)
C120.067 (2)0.069 (2)0.049 (2)0.024 (2)0.0270 (19)0.0043 (18)
O10.0875 (19)0.0624 (16)0.0339 (13)0.0208 (14)0.0272 (13)0.0112 (12)
O20.099 (2)0.0719 (18)0.0522 (15)0.0440 (16)0.0329 (14)0.0027 (13)
O30.0875 (19)0.0539 (15)0.0387 (13)0.0124 (14)0.0223 (13)0.0093 (11)
O40.085 (2)0.080 (2)0.0463 (15)0.0496 (16)0.0092 (14)0.0050 (13)
N10.0504 (17)0.0471 (16)0.0372 (15)0.0072 (14)0.0187 (13)0.0009 (13)
Geometric parameters (Å, º) top
C1—C61.384 (4)C8—C91.511 (4)
C2—C11.365 (4)C9—C101.485 (4)
C2—H20.9300C10—H10A0.9600
C3—C21.392 (4)C10—H10B0.9600
C3—C41.394 (4)C10—H10C0.9600
C3—C71.472 (4)C11—C121.486 (4)
C4—C51.377 (4)C12—H12A0.9600
C4—H40.9300C12—H12B0.9600
C5—C61.376 (4)C12—H12C0.9600
C5—H50.9300O3—C91.206 (4)
C6—H60.9300O4—C111.214 (3)
C7—H70.9300N1—O11.219 (3)
C8—C71.341 (4)N1—O21.219 (3)
C8—C111.490 (4)N1—C11.472 (4)
C1—C6—H6121.2C9—C10—H10A109.5
C1—C2—C3119.6 (3)C9—C10—H10B109.5
C1—C2—H2120.2C9—C10—H10C109.5
C2—C3—C4117.9 (3)C10—C9—C8117.8 (3)
C2—C3—C7124.2 (2)C11—C8—C9112.9 (2)
C2—C1—C6122.8 (3)C11—C12—H12A109.5
C2—C1—N1118.3 (2)C11—C12—H12B109.5
C3—C2—H2120.2C11—C12—H12C109.5
C3—C7—H7114.9C12—C11—C8121.2 (3)
C3—C4—H4119.3H10A—C10—H10B109.5
C4—C3—C7117.8 (3)H10A—C10—H10C109.5
C4—C5—H5119.7H10B—C10—H10C109.5
C5—C6—C1117.7 (3)H12A—C12—H12B109.5
C5—C6—H6121.1H12A—C12—H12C109.5
C5—C4—C3121.4 (3)H12B—C12—H12C109.5
C5—C4—H4119.3O1—N1—O2123.1 (3)
C6—C1—N1118.9 (3)O1—N1—C1118.4 (2)
C6—C5—C4120.6 (3)O2—N1—C1118.5 (3)
C6—C5—H5119.7O3—C9—C10122.4 (3)
C7—C8—C11121.9 (3)O3—C9—C8119.8 (3)
C7—C8—C9125.2 (3)O4—C11—C12120.9 (3)
C8—C7—C3130.1 (3)O4—C11—C8117.8 (3)
C8—C7—H7114.9
C2—C1—C6—C50.5 (5)C7—C8—C11—O4172.3 (3)
C2—C3—C4—C51.3 (5)C7—C8—C11—C126.0 (5)
C2—C3—C7—C89.8 (5)C9—C8—C11—O46.7 (4)
C3—C2—C1—C61.9 (5)C9—C8—C11—C12175.1 (3)
C3—C2—C1—N1177.1 (2)C9—C8—C7—C34.2 (5)
C3—C4—C5—C60.1 (5)C11—C8—C7—C3174.6 (3)
C4—C5—C6—C10.5 (5)C11—C8—C9—O390.6 (4)
C4—C3—C2—C12.3 (4)C11—C8—C9—C1088.8 (3)
C4—C3—C7—C8167.0 (3)O1—N1—C1—C29.6 (4)
C7—C3—C4—C5175.7 (3)O1—N1—C1—C6171.4 (3)
C7—C8—C9—O390.5 (4)O2—N1—C1—C68.7 (4)
C7—C3—C2—C1174.5 (3)O2—N1—C1—C2170.3 (3)
C7—C8—C9—C1090.1 (4)N1—C1—C6—C5178.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.423.282 (4)153
Symmetry code: (i) x+1, y1, z+1.

Experimental details

Crystal data
Chemical formulaC12H11NO4
Mr233.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.0634 (9), 5.2470 (3), 14.9774 (9)
β (°) 114.117 (1)
V3)1152.18 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4779, 1998, 1400
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.171, 1.07
No. of reflections1998
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.423.282 (4)153
Symmetry code: (i) x+1, y1, z+1.
 

Acknowledgements

The author is grateful to Xiangfan University for financial support.

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHinckley, C. C. (1969). J. Am. Chem. Soc. 91, 5160–5162.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMa, D.-Z., Wu, Y.-Q. & Zuo, X. (2005). Mater. Lett. 59, 3678–3681.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoldatov, D. V., Tinnemans, P., Enright, G. D., Ratcliff, C. I., Diamente, P. R. & Ripmeester, J. A. (2003). Chem. Mater. 15, 3826–3840.  Web of Science CSD CrossRef CAS Google Scholar
First citationYoungme, S., Chotkhun, T., Chaichit, N., van Albada, G. A. & Reedijk, J. (2007). Inorg. Chem. Commun. 10, 843–848.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds