organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,3-Di­thian-2-yl)-1,3-di­thiane-2-carbaldehyde

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 15 December 2008; accepted 16 December 2008; online 20 December 2008)

The asymmetric unit of the title compound, C9H14OS4, comprises two crystallographically independent mol­ecules with similar conformations. In each mol­ecule, an intra­molecular C—H⋯O hydrogen bond generates a six-membered ring, producing an S(6) ring motif. All of the six-membered dithia­cyclo­hexane rings adopt chair conformations. The crystal structure is stabilized by four inter­molecular C—H⋯O and one C—H⋯S inter­action.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related literature, see: Goswami & Maity (2008[Goswami, S. & Maity, A. C. (2008). Tetrahedron Lett. 49, 3092-3096.]); Rubin & Gleiter (2000[Rubin, M. B. & Gleiter, R. (2000). Chem. Rev. 100, 1121-1164.]); Wasserman & Parr (2004[Wasserman, H. H. & Parr, J. (2004). Acc. Chem. Res. 37, 687-701.]).

[Scheme 1]

Experimental

Crystal data
  • C9H14OS4

  • Mr = 266.44

  • Monoclinic, P 21 /c

  • a = 13.0028 (2) Å

  • b = 13.6790 (2) Å

  • c = 13.4244 (2) Å

  • β = 91.873 (1)°

  • V = 2386.46 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 100.0 (1) K

  • 0.39 × 0.28 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.754, Tmax = 0.871

  • 68856 measured reflections

  • 12473 independent reflections

  • 9371 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.087

  • S = 1.07

  • 12473 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2AB⋯O1Ai 0.97 2.51 3.3530 (15) 146
C3A—H3AB⋯O1A 0.97 2.48 3.1024 (16) 122
C6A—H6AB⋯O1Bii 0.97 2.51 3.4292 (15) 159
C1B—H1BA⋯O1B 0.97 2.44 3.0508 (16) 121
C2B—H2BA⋯O1Biii 0.97 2.54 3.1913 (16) 124
C3B—H3BA⋯S2Aiv 0.97 2.81 3.5932 (12) 138
C7B—H7BA⋯O1Av 0.97 2.54 3.3436 (17) 140
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1; (v) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Vicinal tricarbonyl compounds are powerful electrophiles with widespread applications in organic synthesis (Rubin & Gleiter, 2000; Wasserman & Parr, 2004). They act as useful precursors to synthesis of elaborate heterocylic compounds and numerous novel biologically important substances such as FK-506, rapamycin and related immunosuppressants. They are also used to develop protease inhibitors derived from peptide carboxylic acids. Thioacetalization of carbonyl compounds (Goswami & Maity, 2008) plays an important role in organic synthesis. Dithioacetals have become widely used tools for C—C bond formation. Here we reported the first synthesis of 2,2'-bis(1,3-dithianyl)-2-carbaldehyde from the smallest vicinal tricarbonyl compound, 2-oxo-1,3-propandial.

In the title compound (I), Fig. 1, intramolecular C—H···O hydrogen bonds (Table 1) generate six-membered rings, producing S(6) ring motifs (Bernstein et al., 1995). The S1A/C1A–C3A/S2A/C4A, S3A/C5A/S4A/C8A/C7A/C6A, S1B/C1B–C3B/S2B/C4B, and S3B/C5B/S4B/C8B/C7B/C6B rings adopt chair conformations with the ring puckering parameters (Cremer & Pople, 1975) of Q = 0.6979 (10) Å, Θ = 5.43 (8)°, Φ = 3.4 (9)°; Q = 0.7467 (10) Å, Θ = 171.28 (8)°, Φ = 246.6 (5)°; Q = 0.6967 (11) Å, Θ = 7.22 (9)°, Φ = 247.2 (7)°; Q = 0.7475 (11) Å, Θ = 170.82 (9)°, Φ = 248.2 (5)°, respectively. The crystal structure is stabilized by intermolecular C—H···O (× 4) and C—H···S interactions (Fig. 2).

Related literature top

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For ring puckering analysis, see: Cremer & Pople (1975). For related literature, see: Goswami & Maity (2008); Rubin & Gleiter (2000); Wasserman & Parr (2004).

Experimental top

To a stirred solution of 2-oxo-1,3-propandial (250 mg, 0.34 mmol) and boron trifluoride etherate (0.5 mL) in dichloromethane (50 mL) cooled at 0 °C is added propane dithiol (450 mg, 4.1 mmol) dropwise over 15 min with stirring. The mixture is stirred at room temperature for 3h. The progress of the reaction is monitored by TLC. After completion of the reaction, NaHCO3 solution is added slowly and carefully to neutralize the mixture at room temperature, which is then extracted with dichloromethane. The organic layer is dried (anhydrous Na2SO4) and then the solvent is removed under reduced pressure. The crude product was purified by column chromatography using silica gel with 20% ethyl acetate in petroleum ether as eluant to afford 2,2'-bis(1,3-dithianyl)-2-carbaldehyde (247 mg, 32%) as a colorless crystalline solid along with other thiane derivatives.

Refinement top

All of the hydrogen atoms were positioned geometrically with C—H = 0.93–0.98 Å and refined in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Dashed lines show intramolecular hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing for (I), viewed down the b axis showing linking of molecules through C—H···O and C—H···S interactions. Intermolecular interactions are drawn as dashed lines.
2-(1,3-Dithian-2-yl)-1,3-dithiane-2-carbaldehyde top
Crystal data top
C9H14OS4F(000) = 1120
Mr = 266.44Dx = 1.483 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6037 reflections
a = 13.0028 (2) Åθ = 2.6–35.5°
b = 13.6790 (2) ŵ = 0.76 mm1
c = 13.4244 (2) ÅT = 100 K
β = 91.873 (1)°Block, colourless
V = 2386.46 (6) Å30.39 × 0.28 × 0.19 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
12473 independent reflections
Radiation source: fine-focus sealed tube9371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 37.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2220
Tmin = 0.754, Tmax = 0.871k = 2223
68856 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0325P)2 + 0.5359P]
where P = (Fo2 + 2Fc2)/3
12473 reflections(Δ/σ)max = 0.002
253 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C9H14OS4V = 2386.46 (6) Å3
Mr = 266.44Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.0028 (2) ŵ = 0.76 mm1
b = 13.6790 (2) ÅT = 100 K
c = 13.4244 (2) Å0.39 × 0.28 × 0.19 mm
β = 91.873 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
12473 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
9371 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.871Rint = 0.055
68856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.07Δρmax = 0.46 e Å3
12473 reflectionsΔρmin = 0.38 e Å3
253 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.46746 (2)0.654917 (19)0.92342 (2)0.01556 (5)
S2A0.62228 (2)0.66697 (2)0.75806 (2)0.01787 (5)
S3A0.74126 (2)0.47975 (2)0.86715 (2)0.01958 (6)
S4A0.71041 (2)0.65781 (2)0.99797 (2)0.02006 (6)
O1A0.48320 (8)0.48599 (7)0.72999 (8)0.02660 (19)
C1A0.37902 (8)0.68880 (8)0.82162 (9)0.01741 (19)
H1AA0.35550.63000.78750.021*
H1AB0.31940.72060.84870.021*
C2A0.42752 (9)0.75689 (8)0.74674 (9)0.0190 (2)
H2AA0.37400.78230.70190.023*
H2AB0.45860.81180.78220.023*
C3A0.50888 (9)0.70711 (9)0.68583 (9)0.0201 (2)
H3AA0.53050.75200.63470.024*
H3AB0.47810.65080.65260.024*
C4A0.56675 (8)0.59204 (7)0.85376 (8)0.01396 (17)
C5A0.65016 (8)0.55798 (7)0.92955 (8)0.01432 (17)
H5AA0.61590.51710.97840.017*
C6A0.80918 (9)0.43427 (9)0.97830 (10)0.0229 (2)
H6AA0.76120.39801.01800.027*
H6AB0.86220.38910.95830.027*
C7A0.85868 (10)0.51357 (9)1.04276 (11)0.0247 (2)
H7AA0.90510.55121.00270.030*
H7AB0.89930.48301.09610.030*
C8A0.78136 (10)0.58263 (9)1.08808 (10)0.0238 (2)
H8AA0.81760.62521.13520.029*
H8AB0.73270.54431.12500.029*
C9A0.51184 (9)0.50023 (8)0.81473 (9)0.0182 (2)
H9AA0.49950.45110.86070.022*
S1B0.86151 (2)0.28160 (2)0.29985 (2)0.01813 (6)
S2B1.02461 (2)0.43886 (2)0.33386 (2)0.01876 (6)
S3B0.78758 (2)0.51420 (2)0.34283 (2)0.01985 (6)
S4B0.75193 (2)0.35947 (2)0.49927 (2)0.02279 (6)
O1B1.00970 (7)0.22837 (7)0.47436 (7)0.02534 (18)
C1B0.96908 (9)0.21483 (9)0.24967 (10)0.0238 (2)
H1BA0.99860.17320.30170.029*
H1BB0.94320.17270.19640.029*
C2B1.05386 (10)0.27878 (11)0.20949 (10)0.0276 (3)
H2BA1.02460.32010.15710.033*
H2BB1.10490.23710.17990.033*
C3B1.10724 (9)0.34340 (10)0.28785 (10)0.0239 (2)
H3BA1.16720.37320.25930.029*
H3BB1.13080.30300.34340.029*
C4B0.92466 (8)0.36320 (7)0.38847 (8)0.01385 (17)
C5B0.84575 (8)0.43202 (8)0.43385 (8)0.01527 (18)
H5BA0.88260.47230.48370.018*
C6B0.71805 (10)0.58963 (9)0.42935 (10)0.0251 (2)
H6BA0.76750.62150.47420.030*
H6BB0.68180.64030.39190.030*
C7B0.64127 (10)0.53471 (10)0.49091 (10)0.0256 (2)
H7BA0.59300.50120.44620.031*
H7BB0.60260.58160.52900.031*
C8B0.68984 (11)0.46041 (11)0.56230 (10)0.0275 (3)
H8BA0.63700.43440.60430.033*
H8BB0.74040.49320.60520.033*
C9B0.98274 (9)0.31267 (8)0.47398 (9)0.01764 (19)
H9BA0.99880.34970.53050.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.01482 (11)0.01624 (11)0.01573 (12)0.00201 (8)0.00224 (9)0.00020 (9)
S2A0.01485 (11)0.02094 (12)0.01797 (13)0.00106 (9)0.00283 (9)0.00538 (9)
S3A0.01766 (12)0.01907 (12)0.02204 (14)0.00508 (9)0.00125 (10)0.00104 (10)
S4A0.02219 (13)0.01382 (11)0.02366 (14)0.00037 (9)0.00701 (10)0.00098 (9)
O1A0.0337 (5)0.0184 (4)0.0268 (5)0.0044 (3)0.0117 (4)0.0054 (3)
C1A0.0144 (4)0.0167 (5)0.0210 (5)0.0019 (3)0.0002 (4)0.0004 (4)
C2A0.0185 (5)0.0158 (5)0.0226 (5)0.0031 (4)0.0013 (4)0.0032 (4)
C3A0.0206 (5)0.0216 (5)0.0180 (5)0.0030 (4)0.0008 (4)0.0063 (4)
C4A0.0146 (4)0.0122 (4)0.0152 (5)0.0007 (3)0.0017 (3)0.0002 (3)
C5A0.0140 (4)0.0120 (4)0.0170 (5)0.0001 (3)0.0004 (3)0.0008 (3)
C6A0.0200 (5)0.0180 (5)0.0306 (6)0.0042 (4)0.0018 (4)0.0039 (4)
C7A0.0199 (5)0.0217 (5)0.0320 (7)0.0011 (4)0.0078 (5)0.0051 (5)
C8A0.0246 (5)0.0226 (5)0.0236 (6)0.0005 (4)0.0089 (4)0.0013 (4)
C9A0.0180 (5)0.0137 (4)0.0229 (5)0.0016 (3)0.0010 (4)0.0010 (4)
S1B0.01571 (11)0.01880 (12)0.01966 (13)0.00048 (9)0.00272 (9)0.00554 (9)
S2B0.01721 (11)0.01821 (12)0.02107 (13)0.00308 (9)0.00389 (10)0.00171 (9)
S3B0.02317 (13)0.01821 (12)0.01821 (13)0.00516 (9)0.00150 (10)0.00249 (9)
S4B0.02262 (13)0.02165 (13)0.02473 (15)0.00012 (10)0.01028 (11)0.00316 (11)
O1B0.0301 (5)0.0229 (4)0.0227 (4)0.0064 (3)0.0031 (4)0.0032 (3)
C1B0.0233 (5)0.0241 (6)0.0239 (6)0.0056 (4)0.0001 (4)0.0093 (4)
C2B0.0267 (6)0.0357 (7)0.0207 (6)0.0061 (5)0.0059 (5)0.0043 (5)
C3B0.0179 (5)0.0285 (6)0.0258 (6)0.0027 (4)0.0075 (4)0.0016 (5)
C4B0.0142 (4)0.0144 (4)0.0129 (4)0.0013 (3)0.0005 (3)0.0001 (3)
C5B0.0170 (4)0.0145 (4)0.0143 (5)0.0005 (3)0.0006 (3)0.0000 (3)
C6B0.0277 (6)0.0199 (5)0.0278 (6)0.0083 (4)0.0003 (5)0.0044 (4)
C7B0.0218 (5)0.0311 (6)0.0238 (6)0.0065 (4)0.0022 (4)0.0093 (5)
C8B0.0260 (6)0.0360 (7)0.0211 (6)0.0051 (5)0.0085 (5)0.0033 (5)
C9B0.0179 (4)0.0207 (5)0.0143 (5)0.0006 (4)0.0001 (4)0.0015 (4)
Geometric parameters (Å, º) top
S1A—C1A1.8171 (12)S1B—C4B1.8088 (11)
S1A—C4A1.8330 (10)S1B—C1B1.8183 (12)
S2A—C4A1.8119 (11)S2B—C3B1.8123 (13)
S2A—C3A1.8227 (12)S2B—C4B1.8329 (10)
S3A—C6A1.8185 (13)S3B—C5B1.8079 (11)
S3A—C5A1.8207 (11)S3B—C6B1.8165 (13)
S4A—C5A1.8099 (11)S4B—C5B1.8206 (11)
S4A—C8A1.8162 (13)S4B—C8B1.8218 (13)
O1A—C9A1.2013 (15)O1B—C9B1.2052 (14)
C1A—C2A1.5222 (16)C1B—C2B1.5200 (19)
C1A—H1AA0.9700C1B—H1BA0.9700
C1A—H1AB0.9700C1B—H1BB0.9700
C2A—C3A1.5193 (16)C2B—C3B1.524 (2)
C2A—H2AA0.9700C2B—H2BA0.9700
C2A—H2AB0.9700C2B—H2BB0.9700
C3A—H3AA0.9700C3B—H3BA0.9700
C3A—H3AB0.9700C3B—H3BB0.9700
C4A—C9A1.5287 (15)C4B—C9B1.5197 (16)
C4A—C5A1.5350 (15)C4B—C5B1.5333 (15)
C5A—H5AA0.9800C5B—H5BA0.9800
C6A—C7A1.5177 (19)C6B—C7B1.5159 (19)
C6A—H6AA0.9700C6B—H6BA0.9700
C6A—H6AB0.9700C6B—H6BB0.9700
C7A—C8A1.5210 (19)C7B—C8B1.520 (2)
C7A—H7AA0.9700C7B—H7BA0.9700
C7A—H7AB0.9700C7B—H7BB0.9700
C8A—H8AA0.9700C8B—H8BA0.9700
C8A—H8AB0.9700C8B—H8BB0.9700
C9A—H9AA0.9300C9B—H9BA0.9300
C1A—S1A—C4A100.07 (5)C4B—S1B—C1B102.44 (5)
C4A—S2A—C3A102.32 (5)C3B—S2B—C4B99.53 (5)
C6A—S3A—C5A97.44 (6)C5B—S3B—C6B97.30 (6)
C5A—S4A—C8A96.48 (5)C5B—S4B—C8B97.18 (6)
C2A—C1A—S1A112.77 (8)C2B—C1B—S1B114.71 (9)
C2A—C1A—H1AA109.0C2B—C1B—H1BA108.6
S1A—C1A—H1AA109.0S1B—C1B—H1BA108.6
C2A—C1A—H1AB109.0C2B—C1B—H1BB108.6
S1A—C1A—H1AB109.0S1B—C1B—H1BB108.6
H1AA—C1A—H1AB107.8H1BA—C1B—H1BB107.6
C3A—C2A—C1A113.07 (9)C1B—C2B—C3B114.09 (11)
C3A—C2A—H2AA109.0C1B—C2B—H2BA108.7
C1A—C2A—H2AA109.0C3B—C2B—H2BA108.7
C3A—C2A—H2AB109.0C1B—C2B—H2BB108.7
C1A—C2A—H2AB109.0C3B—C2B—H2BB108.7
H2AA—C2A—H2AB107.8H2BA—C2B—H2BB107.6
C2A—C3A—S2A114.46 (9)C2B—C3B—S2B113.05 (9)
C2A—C3A—H3AA108.6C2B—C3B—H3BA109.0
S2A—C3A—H3AA108.6S2B—C3B—H3BA109.0
C2A—C3A—H3AB108.6C2B—C3B—H3BB109.0
S2A—C3A—H3AB108.6S2B—C3B—H3BB109.0
H3AA—C3A—H3AB107.6H3BA—C3B—H3BB107.8
C9A—C4A—C5A106.84 (8)C9B—C4B—C5B107.55 (9)
C9A—C4A—S2A114.46 (8)C9B—C4B—S1B114.83 (8)
C5A—C4A—S2A110.63 (7)C5B—C4B—S1B110.18 (7)
C9A—C4A—S1A103.39 (7)C9B—C4B—S2B102.57 (7)
C5A—C4A—S1A107.36 (7)C5B—C4B—S2B107.74 (7)
S2A—C4A—S1A113.58 (5)S1B—C4B—S2B113.45 (6)
C4A—C5A—S4A113.09 (7)C4B—C5B—S3B112.57 (7)
C4A—C5A—S3A109.25 (7)C4B—C5B—S4B108.94 (7)
S4A—C5A—S3A113.55 (6)S3B—C5B—S4B113.13 (6)
C4A—C5A—H5AA106.8C4B—C5B—H5BA107.3
S4A—C5A—H5AA106.8S3B—C5B—H5BA107.3
S3A—C5A—H5AA106.8S4B—C5B—H5BA107.3
C7A—C6A—S3A114.14 (8)C7B—C6B—S3B114.68 (9)
C7A—C6A—H6AA108.7C7B—C6B—H6BA108.6
S3A—C6A—H6AA108.7S3B—C6B—H6BA108.6
C7A—C6A—H6AB108.7C7B—C6B—H6BB108.6
S3A—C6A—H6AB108.7S3B—C6B—H6BB108.6
H6AA—C6A—H6AB107.6H6BA—C6B—H6BB107.6
C6A—C7A—C8A113.48 (10)C6B—C7B—C8B114.05 (11)
C6A—C7A—H7AA108.9C6B—C7B—H7BA108.7
C8A—C7A—H7AA108.9C8B—C7B—H7BA108.7
C6A—C7A—H7AB108.9C6B—C7B—H7BB108.7
C8A—C7A—H7AB108.9C8B—C7B—H7BB108.7
H7AA—C7A—H7AB107.7H7BA—C7B—H7BB107.6
C7A—C8A—S4A114.41 (10)C7B—C8B—S4B113.28 (9)
C7A—C8A—H8AA108.7C7B—C8B—H8BA108.9
S4A—C8A—H8AA108.7S4B—C8B—H8BA108.9
C7A—C8A—H8AB108.7C7B—C8B—H8BB108.9
S4A—C8A—H8AB108.7S4B—C8B—H8BB108.9
H8AA—C8A—H8AB107.6H8BA—C8B—H8BB107.7
O1A—C9A—C4A125.78 (11)O1B—C9B—C4B125.14 (11)
O1A—C9A—H9AA117.1O1B—C9B—H9BA117.4
C4A—C9A—H9AA117.1C4B—C9B—H9BA117.4
C4A—S1A—C1A—C2A61.63 (9)C4B—S1B—C1B—C2B53.25 (11)
S1A—C1A—C2A—C3A69.59 (12)S1B—C1B—C2B—C3B62.79 (14)
C1A—C2A—C3A—S2A65.11 (12)C1B—C2B—C3B—S2B68.27 (13)
C4A—S2A—C3A—C2A54.44 (10)C4B—S2B—C3B—C2B61.78 (10)
C3A—S2A—C4A—C9A64.43 (9)C1B—S1B—C4B—C9B62.56 (9)
C3A—S2A—C4A—C5A174.81 (7)C1B—S1B—C4B—C5B175.84 (8)
C3A—S2A—C4A—S1A54.00 (7)C1B—S1B—C4B—S2B54.96 (7)
C1A—S1A—C4A—C9A67.55 (8)C3B—S2B—C4B—C9B65.98 (8)
C1A—S1A—C4A—C5A179.71 (7)C3B—S2B—C4B—C5B179.29 (8)
C1A—S1A—C4A—S2A57.08 (7)C3B—S2B—C4B—S1B58.47 (7)
C9A—C4A—C5A—S4A171.08 (7)C9B—C4B—C5B—S3B169.01 (7)
S2A—C4A—C5A—S4A63.73 (9)S1B—C4B—C5B—S3B65.16 (8)
S1A—C4A—C5A—S4A60.71 (8)S2B—C4B—C5B—S3B59.08 (8)
C9A—C4A—C5A—S3A61.41 (9)C9B—C4B—C5B—S4B64.66 (9)
S2A—C4A—C5A—S3A63.79 (8)S1B—C4B—C5B—S4B61.17 (8)
S1A—C4A—C5A—S3A171.78 (5)S2B—C4B—C5B—S4B174.59 (5)
C8A—S4A—C5A—C4A170.50 (8)C6B—S3B—C5B—C4B172.25 (8)
C8A—S4A—C5A—S3A64.27 (7)C6B—S3B—C5B—S4B63.71 (7)
C6A—S3A—C5A—C4A168.90 (7)C8B—S4B—C5B—C4B169.19 (8)
C6A—S3A—C5A—S4A63.85 (7)C8B—S4B—C5B—S3B64.81 (7)
C5A—S3A—C6A—C7A59.07 (10)C5B—S3B—C6B—C7B59.23 (10)
S3A—C6A—C7A—C8A64.76 (13)S3B—C6B—C7B—C8B64.90 (14)
C6A—C7A—C8A—S4A66.24 (13)C6B—C7B—C8B—S4B65.45 (14)
C5A—S4A—C8A—C7A61.09 (10)C5B—S4B—C8B—C7B60.64 (11)
C5A—C4A—C9A—O1A140.54 (12)C5B—C4B—C9B—O1B141.54 (11)
S2A—C4A—C9A—O1A17.70 (15)S1B—C4B—C9B—O1B18.52 (15)
S1A—C4A—C9A—O1A106.35 (12)S2B—C4B—C9B—O1B105.02 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2AB···O1Ai0.972.513.3530 (15)146
C3A—H3AB···O1A0.972.483.1024 (16)122
C6A—H6AB···O1Bii0.972.513.4292 (15)159
C1B—H1BA···O1B0.972.443.0508 (16)121
C2B—H2BA···O1Biii0.972.543.1913 (16)124
C3B—H3BA···S2Aiv0.972.813.5932 (12)138
C7B—H7BA···O1Av0.972.543.3436 (17)140
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H14OS4
Mr266.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.0028 (2), 13.6790 (2), 13.4244 (2)
β (°) 91.873 (1)
V3)2386.46 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.39 × 0.28 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.754, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
68856, 12473, 9371
Rint0.055
(sin θ/λ)max1)0.857
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.087, 1.07
No. of reflections12473
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.38

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2AB···O1Ai0.97002.51003.3530 (15)146.00
C3A—H3AB···O1A0.97002.48003.1024 (16)122.00
C6A—H6AB···O1Bii0.97002.51003.4292 (15)159.00
C1B—H1BA···O1B0.97002.44003.0508 (16)121.00
C2B—H2BA···O1Biii0.97002.54003.1913 (16)124.00
C3B—H3BA···S2Aiv0.97002.81003.5932 (12)138.00
C7B—H7BA···O1Av0.97002.54003.3436 (17)140.00
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. We thank the DST [SR /S1/OC-13/2005], Government of India, for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGoswami, S. & Maity, A. C. (2008). Tetrahedron Lett. 49, 3092–3096.  Web of Science CrossRef CAS Google Scholar
First citationRubin, M. B. & Gleiter, R. (2000). Chem. Rev. 100, 1121–1164.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWasserman, H. H. & Parr, J. (2004). Acc. Chem. Res. 37, 687–701.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds