organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Di-tert-butyl­ethane-1,2-diyl bis­­(tert-butane­sulfinamide)

aJiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, People's Republic of China, and bExperimental Chemistry Center, Nanchang University, Nanchang 330031, People's Republic of China
*Correspondence e-mail: sunxiaoxia77@yahoo.cn.

(Received 3 July 2008; accepted 12 December 2008; online 20 December 2008)

In the title compound, C18H40N2O2S2, a vicinal diamine derivative, the crystal structure is stabilized by two intra­molecular N—H⋯O hydrogen bonds. The distance between the two kernel chiral C atoms is 1.580 (2) Å.

Related literature

For details of the preparation, see: Sun et al. (2005[Sun, X.-X., Wang, S.-J., Zhu, J. & Deng, J.-G. (2005). Synlett, 18, 2776-2781.]). For background to vicinal diamines, see: Roland et al. (1999[Roland, S., Mangeney, P. & Alexakis, A. (1999). Synthesis, 2, 228-230.]); Lucet et al. (1998[Lucet, D., Le Gall, T. & Mioskowski, C. (1998). Angew. Chem. Int. Ed. 37, 2580-2627.]). For related literature, see: Alexakis et al. (2000[Alexakis, A., Tomassini, A., Chouillet, C., Roland, S., Mangeney, P. & Bernardinelli, G. (2000). Angew. Chem. Int. Ed. 39, 4093-4095.]).

[Scheme 1]

Experimental

Crystal data
  • C18H40N2O2S2

  • Mr = 380.64

  • Monoclinic, P 21 /c

  • a = 13.053 (2) Å

  • b = 9.578 (1) Å

  • c = 18.279 (2) Å

  • β = 92.069 (8)°

  • V = 2283.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 287 (2) K

  • 0.50 × 0.44 × 0.38 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: none

  • 4904 measured reflections

  • 4242 independent reflections

  • 3039 reflections with I > 2σ(I)

  • Rint = 0.014

  • 3 standard reflections every 97 reflections intensity decay: 4.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.00

  • 4242 reflections

  • 238 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.850 (9) 2.204 (10) 3.023 (2) 161.9 (16)
N2—H2N⋯O1 0.837 (9) 2.210 (10) 3.013 (2) 161.0 (16)

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, enantiopure vicinal diamines have played an increasingly important role in organic chemistry, particularly due to their use as chiral auxiliaries or precursors for the synthesis of a broad family of bidentate ligands (Lucet et al., 1998). Among all organic vicinal diamine compounds, ditertbutyl vicinal diamine are the most promising candidates for those application, mainly due to the great steric hindrance (Roland et al., 1999).

The X-ray crystallographic study confirms the molecular structure previously proposed on the basis of spectroscopic data (Fig. 1). The molecule adopts big steric hindrance with excellent diastereoselectivity and high enantioselectivity.The distance between the two kernel chiral C atoms is 1.580 (2) Å. The syn relative configuration of the newly formed stereocenters is expected according to the Cram rule (Alexakis et al., 2000).

Related literature top

For details of the preparation, see: Sun et al. (2005). For background to vicinal diamines, see: Roland et al. (1999); Lucet et al. (1998). For related literature, see: Alexakis et al. (2000).

Experimental top

Compound (Ia) was prepared from Bis-[(R)- N-tert-Butanesulfinyl]ethanediimine (264 mg, 1.00 mmol). To a flask was added the Bis-[(R)- N-tert-Butanesulfinyl] ethanediimine in the specified solvent and the solution was then cooled to 195 K under a argon atmosphere. 2 mol/L t-BuLi in diethyl ether (2.0 ml) was added slowly to the solution and stirred for 3-5 h. The reaction mixture warmed to room temperature and stirred for a further 2 h. The mixture cooled to 273 K and quenched by the addition of a saturation solution of sodium sulfate. Organic phase separated and aqueous phase extracted with ethyl acetate. Combined organic layers were dried over magnesium sulfate, filtered and concentrated. The residue purified via flash chromatography to afford disulfinamide (Sun et al., 2005).

Finally the colorless crystals were obtained by slow vapour diffusion of diethyl ether. The titile compound was characterized by melting point, Rotation, IR, HRMS and NMR(m.p.134.7–135.4 K). 1HNMR (300 MHz, CDCl3, TMS): δ 1.03 (s, 18H,–6CH3), 1.27 (s, 18H,–6CH3), 3.16(d, 2H, J = 10.2 Hz, –2CH), 5.34(d, 2H, J = 10.4 Hz–2NH); 13C NMR (75 MHz, CDCl3): δ 23.38, 28.40, 37.15, 56.94, 65.55; IR (KBr, cm-1): 1040, 2869, 3192; a = -79.4 (c=0.94, CHCl3); HRMS for C18H40N2O2S2Na (M+Na): calcd. 403.2423, found: 403.2412.

Refinement top

The structure was solved by direct methods using SHELXS-97 and refined by full-matrix least-square calculation on F2 with SHELXL-97.

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound in the solid state, showing the labeling scheme. The crystallographic 2-fold axis passes through the C5-C10 bond and is perpendicular to the plane of the picture.
[Figure 2] Fig. 2. Synthesis of the title compound.
[Figure 3] Fig. 3. The formation of the title compound.
1,2-di-tert-butylethane-1,2-diyl bis(tert-butanesulfinamide) top
Crystal data top
C18H40N2O2S2Dx = 1.107 Mg m3
Mr = 380.64Melting point: 408 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.053 (2) ÅCell parameters from 31 reflections
b = 9.578 (1) Åθ = 2.7–12.9°
c = 18.279 (2) ŵ = 0.25 mm1
β = 92.069 (8)°T = 287 K
V = 2283.6 (6) Å3Block, colorless
Z = 40.50 × 0.44 × 0.38 mm
F(000) = 840
Data collection top
Bruker P4
diffractometer
Rint = 0.014
Radiation source: normal-focus sealed tubeθmax = 25.5°, θmin = 1.6°
Graphite monochromatorh = 015
ω scansk = 011
4904 measured reflectionsl = 2222
4242 independent reflections3 standard reflections every 97 reflections
3039 reflections with I > 2σ(I) intensity decay: 4.6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.051P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4242 reflectionsΔρmax = 0.20 e Å3
238 parametersΔρmin = 0.15 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0048 (6)
Crystal data top
C18H40N2O2S2V = 2283.6 (6) Å3
Mr = 380.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.053 (2) ŵ = 0.25 mm1
b = 9.578 (1) ÅT = 287 K
c = 18.279 (2) Å0.50 × 0.44 × 0.38 mm
β = 92.069 (8)°
Data collection top
Bruker P4
diffractometer
Rint = 0.014
4904 measured reflections3 standard reflections every 97 reflections
4242 independent reflections intensity decay: 4.6%
3039 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.20 e Å3
4242 reflectionsΔρmin = 0.15 e Å3
238 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09320 (4)0.81382 (5)0.57024 (2)0.04452 (15)
S20.41067 (4)0.71457 (5)0.64172 (2)0.04755 (16)
O10.16644 (10)0.92962 (13)0.55761 (8)0.0603 (4)
O20.33913 (10)0.72124 (15)0.70341 (7)0.0616 (4)
N10.15338 (11)0.67388 (15)0.60287 (8)0.0393 (4)
N20.34913 (11)0.73713 (16)0.56192 (8)0.0405 (4)
C10.02627 (15)0.8664 (2)0.65301 (11)0.0514 (5)
C20.0445 (2)0.7494 (3)0.67459 (14)0.0861 (8)
H2A0.00450.67150.69230.103*
H2B0.08600.72110.63280.103*
H2C0.08790.78140.71240.103*
C30.10290 (18)0.9028 (3)0.71364 (14)0.0936 (9)
H3A0.06770.94100.75430.112*
H3B0.15050.97040.69620.112*
H3C0.13930.82020.72900.112*
C40.03526 (19)0.9938 (3)0.62925 (14)0.0865 (8)
H4A0.08170.96920.58940.104*
H4B0.01041.06560.61370.104*
H4C0.07351.02720.66960.104*
C50.19507 (13)0.57327 (17)0.55054 (9)0.0385 (4)
H50.14890.57490.50710.046*
C60.18631 (14)0.42373 (18)0.58457 (11)0.0472 (5)
C70.24761 (17)0.4111 (2)0.65644 (12)0.0705 (7)
H7A0.22340.47860.69060.085*
H7B0.31880.42780.64820.085*
H7C0.23940.31890.67600.085*
C80.22317 (19)0.3096 (2)0.53305 (13)0.0726 (7)
H8A0.21310.21970.55490.087*
H8B0.29470.32280.52460.087*
H8C0.18480.31470.48730.087*
C90.07334 (16)0.3948 (2)0.59808 (14)0.0714 (7)
H9A0.06630.30230.61750.086*
H9B0.03420.40240.55280.086*
H9C0.04870.46150.63250.086*
C100.30488 (13)0.61437 (18)0.52394 (9)0.0402 (4)
H100.35030.53540.53570.048*
C110.31135 (15)0.6413 (2)0.43952 (10)0.0489 (5)
C120.24953 (17)0.7680 (2)0.41434 (11)0.0632 (6)
H12A0.27230.84860.44160.076*
H12B0.17820.75200.42230.076*
H12C0.25900.78360.36320.076*
C130.27289 (18)0.5154 (2)0.39419 (11)0.0713 (7)
H13A0.20120.50130.40180.086*
H13B0.31040.43350.40920.086*
H13C0.28300.53280.34320.086*
C140.42397 (16)0.6639 (3)0.42250 (12)0.0779 (7)
H14A0.43040.67340.37060.093*
H14B0.46370.58540.43970.093*
H14C0.44860.74720.44650.093*
C150.48154 (15)0.8818 (2)0.64613 (11)0.0545 (5)
C160.55540 (17)0.8832 (3)0.58439 (13)0.0728 (7)
H16A0.51760.88780.53840.087*
H16B0.59600.79960.58620.087*
H16C0.59950.96310.58940.087*
C170.40897 (18)1.0040 (3)0.64227 (15)0.0878 (8)
H17A0.35970.99490.67970.105*
H17B0.37411.00580.59510.105*
H17C0.44681.08910.64950.105*
C180.5409 (2)0.8768 (3)0.71924 (13)0.1062 (11)
H18A0.58440.95730.72390.127*
H18B0.58200.79370.72170.127*
H18C0.49360.87630.75830.127*
H1N0.1955 (11)0.6939 (18)0.6378 (7)0.043 (5)*
H2N0.3093 (11)0.8056 (13)0.5610 (9)0.033 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0499 (3)0.0374 (3)0.0460 (3)0.0041 (2)0.0009 (2)0.0020 (2)
S20.0482 (3)0.0541 (3)0.0397 (3)0.0101 (2)0.0082 (2)0.0056 (2)
O10.0687 (9)0.0382 (7)0.0747 (10)0.0024 (7)0.0123 (8)0.0111 (7)
O20.0649 (9)0.0805 (11)0.0394 (7)0.0208 (8)0.0021 (7)0.0050 (7)
N10.0438 (9)0.0358 (8)0.0381 (8)0.0001 (7)0.0038 (7)0.0001 (7)
N20.0413 (9)0.0408 (9)0.0388 (8)0.0031 (8)0.0056 (7)0.0021 (7)
C10.0544 (12)0.0454 (11)0.0546 (12)0.0060 (10)0.0054 (10)0.0059 (9)
C20.0939 (19)0.0742 (17)0.0929 (19)0.0062 (15)0.0417 (16)0.0054 (14)
C30.0804 (17)0.129 (2)0.0717 (16)0.0147 (17)0.0007 (14)0.0493 (16)
C40.0941 (19)0.0639 (16)0.103 (2)0.0295 (14)0.0211 (16)0.0018 (14)
C50.0426 (10)0.0341 (9)0.0383 (10)0.0013 (8)0.0069 (8)0.0015 (8)
C60.0508 (12)0.0336 (10)0.0567 (12)0.0027 (9)0.0049 (9)0.0040 (9)
C70.0887 (17)0.0508 (13)0.0705 (15)0.0072 (12)0.0157 (13)0.0220 (11)
C80.0924 (17)0.0372 (12)0.0882 (17)0.0029 (12)0.0042 (14)0.0030 (11)
C90.0670 (15)0.0466 (13)0.1006 (19)0.0140 (11)0.0048 (13)0.0095 (12)
C100.0447 (10)0.0361 (10)0.0392 (10)0.0025 (8)0.0043 (8)0.0023 (8)
C110.0544 (12)0.0545 (12)0.0379 (10)0.0011 (10)0.0016 (9)0.0047 (9)
C120.0832 (16)0.0652 (14)0.0410 (11)0.0007 (13)0.0000 (11)0.0088 (10)
C130.0964 (18)0.0711 (15)0.0459 (12)0.0033 (14)0.0028 (12)0.0128 (11)
C140.0707 (16)0.111 (2)0.0532 (13)0.0070 (15)0.0197 (12)0.0089 (14)
C150.0534 (12)0.0618 (13)0.0478 (11)0.0208 (11)0.0056 (10)0.0025 (10)
C160.0651 (14)0.0745 (16)0.0795 (16)0.0209 (13)0.0103 (13)0.0034 (13)
C170.0820 (18)0.0604 (16)0.122 (2)0.0179 (14)0.0155 (16)0.0283 (15)
C180.117 (2)0.137 (3)0.0618 (15)0.069 (2)0.0343 (15)0.0106 (16)
Geometric parameters (Å, º) top
S1—O11.4877 (14)C8—H8B0.9600
S1—N11.6539 (15)C8—H8C0.9600
S1—C11.844 (2)C9—H9A0.9600
S2—O21.4913 (14)C9—H9B0.9600
S2—N21.6538 (15)C9—H9C0.9600
S2—C151.850 (2)C10—C111.570 (2)
N1—C51.476 (2)C10—H100.9800
N1—H1N0.850 (9)C11—C121.520 (3)
N2—C101.473 (2)C11—C141.529 (3)
N2—H2N0.837 (9)C11—C131.537 (3)
C1—C31.507 (3)C12—H12A0.9600
C1—C21.513 (3)C12—H12B0.9600
C1—C41.516 (3)C12—H12C0.9600
C2—H2A0.9600C13—H13A0.9600
C2—H2B0.9600C13—H13B0.9600
C2—H2C0.9600C13—H13C0.9600
C3—H3A0.9600C14—H14A0.9600
C3—H3B0.9600C14—H14B0.9600
C3—H3C0.9600C14—H14C0.9600
C4—H4A0.9600C15—C171.505 (3)
C4—H4B0.9600C15—C161.511 (3)
C4—H4C0.9600C15—C181.521 (3)
C5—C61.567 (2)C16—H16A0.9600
C5—C101.580 (2)C16—H16B0.9600
C5—H50.9800C16—H16C0.9600
C6—C71.518 (3)C17—H17A0.9600
C6—C91.529 (3)C17—H17B0.9600
C6—C81.532 (3)C17—H17C0.9600
C7—H7A0.9600C18—H18A0.9600
C7—H7B0.9600C18—H18B0.9600
C7—H7C0.9600C18—H18C0.9600
C8—H8A0.9600
O1—S1—N1111.14 (8)C6—C9—H9A109.5
O1—S1—C1104.49 (9)C6—C9—H9B109.5
N1—S1—C199.10 (8)H9A—C9—H9B109.5
O2—S2—N2111.34 (8)C6—C9—H9C109.5
O2—S2—C15104.82 (9)H9A—C9—H9C109.5
N2—S2—C1598.71 (8)H9B—C9—H9C109.5
C5—N1—S1118.48 (11)N2—C10—C11107.35 (14)
C5—N1—H1N113.0 (12)N2—C10—C5113.49 (14)
S1—N1—H1N112.0 (12)C11—C10—C5115.16 (14)
C10—N2—S2118.77 (12)N2—C10—H10106.8
C10—N2—H2N112.5 (12)C11—C10—H10106.8
S2—N2—H2N113.7 (12)C5—C10—H10106.8
C3—C1—C2112.0 (2)C12—C11—C14109.21 (18)
C3—C1—C4110.80 (19)C12—C11—C13107.68 (16)
C2—C1—C4110.38 (18)C14—C11—C13107.41 (18)
C3—C1—S1110.19 (15)C12—C11—C10112.46 (15)
C2—C1—S1108.89 (14)C14—C11—C10108.04 (16)
C4—C1—S1104.26 (14)C13—C11—C10111.91 (16)
C1—C2—H2A109.5C11—C12—H12A109.5
C1—C2—H2B109.5C11—C12—H12B109.5
H2A—C2—H2B109.5H12A—C12—H12B109.5
C1—C2—H2C109.5C11—C12—H12C109.5
H2A—C2—H2C109.5H12A—C12—H12C109.5
H2B—C2—H2C109.5H12B—C12—H12C109.5
C1—C3—H3A109.5C11—C13—H13A109.5
C1—C3—H3B109.5C11—C13—H13B109.5
H3A—C3—H3B109.5H13A—C13—H13B109.5
C1—C3—H3C109.5C11—C13—H13C109.5
H3A—C3—H3C109.5H13A—C13—H13C109.5
H3B—C3—H3C109.5H13B—C13—H13C109.5
C1—C4—H4A109.5C11—C14—H14A109.5
C1—C4—H4B109.5C11—C14—H14B109.5
H4A—C4—H4B109.5H14A—C14—H14B109.5
C1—C4—H4C109.5C11—C14—H14C109.5
H4A—C4—H4C109.5H14A—C14—H14C109.5
H4B—C4—H4C109.5H14B—C14—H14C109.5
N1—C5—C6107.79 (14)C17—C15—C16112.07 (19)
N1—C5—C10113.38 (13)C17—C15—C18111.4 (2)
C6—C5—C10115.46 (14)C16—C15—C18109.77 (18)
N1—C5—H5106.5C17—C15—S2110.98 (14)
C6—C5—H5106.5C16—C15—S2107.86 (15)
C10—C5—H5106.5C18—C15—S2104.43 (15)
C7—C6—C9109.08 (18)C15—C16—H16A109.5
C7—C6—C8107.91 (17)C15—C16—H16B109.5
C9—C6—C8107.22 (17)H16A—C16—H16B109.5
C7—C6—C5111.88 (15)C15—C16—H16C109.5
C9—C6—C5108.33 (16)H16A—C16—H16C109.5
C8—C6—C5112.28 (16)H16B—C16—H16C109.5
C6—C7—H7A109.5C15—C17—H17A109.5
C6—C7—H7B109.5C15—C17—H17B109.5
H7A—C7—H7B109.5H17A—C17—H17B109.5
C6—C7—H7C109.5C15—C17—H17C109.5
H7A—C7—H7C109.5H17A—C17—H17C109.5
H7B—C7—H7C109.5H17B—C17—H17C109.5
C6—C8—H8A109.5C15—C18—H18A109.5
C6—C8—H8B109.5C15—C18—H18B109.5
H8A—C8—H8B109.5H18A—C18—H18B109.5
C6—C8—H8C109.5C15—C18—H18C109.5
H8A—C8—H8C109.5H18A—C18—H18C109.5
H8B—C8—H8C109.5H18B—C18—H18C109.5
O1—S1—N1—C587.21 (14)S2—N2—C10—C11147.20 (13)
C1—S1—N1—C5163.31 (13)S2—N2—C10—C584.38 (16)
O2—S2—N2—C1087.89 (15)N1—C5—C10—N25.9 (2)
C15—S2—N2—C10162.38 (14)C6—C5—C10—N2119.21 (16)
O1—S1—C1—C352.12 (18)N1—C5—C10—C11118.43 (16)
N1—S1—C1—C362.63 (18)C6—C5—C10—C11116.50 (17)
O1—S1—C1—C2175.36 (15)N2—C10—C11—C1262.0 (2)
N1—S1—C1—C260.62 (17)C5—C10—C11—C1265.4 (2)
O1—S1—C1—C466.81 (16)N2—C10—C11—C1458.6 (2)
N1—S1—C1—C4178.44 (14)C5—C10—C11—C14173.97 (16)
S1—N1—C5—C6146.44 (12)N2—C10—C11—C13176.62 (16)
S1—N1—C5—C1084.47 (16)C5—C10—C11—C1355.9 (2)
N1—C5—C6—C761.1 (2)O2—S2—C15—C1756.39 (17)
C10—C5—C6—C766.8 (2)N2—S2—C15—C1758.53 (17)
N1—C5—C6—C959.21 (19)O2—S2—C15—C16179.51 (14)
C10—C5—C6—C9172.89 (16)N2—S2—C15—C1664.59 (16)
N1—C5—C6—C8177.42 (16)O2—S2—C15—C1863.76 (18)
C10—C5—C6—C854.7 (2)N2—S2—C15—C18178.68 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.85 (1)2.20 (1)3.023 (2)162 (2)
N2—H2N···O10.84 (1)2.21 (1)3.013 (2)161 (2)

Experimental details

Crystal data
Chemical formulaC18H40N2O2S2
Mr380.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)287
a, b, c (Å)13.053 (2), 9.578 (1), 18.279 (2)
β (°) 92.069 (8)
V3)2283.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.50 × 0.44 × 0.38
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4904, 4242, 3039
Rint0.014
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.00
No. of reflections4242
No. of parameters238
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.15

Computer programs: XSCANS (Siemens, 1994), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.850 (9)2.204 (10)3.023 (2)161.9 (16)
N2—H2N···O10.837 (9)2.210 (10)3.013 (2)161.0 (16)
 

Acknowledgements

This work was supported by the Science Fund of the Education Office of Jiangxi, China ([2007]279).

References

First citationAlexakis, A., Tomassini, A., Chouillet, C., Roland, S., Mangeney, P. & Bernardinelli, G. (2000). Angew. Chem. Int. Ed. 39, 4093–4095.  CrossRef CAS Google Scholar
First citationLucet, D., Le Gall, T. & Mioskowski, C. (1998). Angew. Chem. Int. Ed. 37, 2580–2627.  CrossRef CAS Google Scholar
First citationRoland, S., Mangeney, P. & Alexakis, A. (1999). Synthesis, 2, 228–230.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSun, X.-X., Wang, S.-J., Zhu, J. & Deng, J.-G. (2005). Synlett, 18, 2776–2781.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds