metal-organic compounds
The first oxazoline adduct of Zn(acac)2: bis(acetylacetonato-κ2O,O′)(2-phenyl-2-oxazoline-κN)zinc(II)
aDepartamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Avda. Julián Clavería, 8, 33006 Oviedo, Spain, and bDepartment of Chemistry & Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
*Correspondence e-mail: gossage@ryerson.ca
The title material, [Zn(C5H7O2)2(C9H9NO)], was synthesized by the treatment of bis(acetylacetonato)zinc(II) monohydrate with 2-phenyl-2-oxazoline. The Zn atom is coordinated by two chelating acetylacetonate groups and one oxazoline ligand in the apical position of a slightly distorted square-pyramidal metal–ligand geometry.
Related literature
For general background, see: Addison et al. (1984); Itoh et al. (1989); Kaeriyama (1974); Williams (1989). For related structures, see: Barclay et al. (2003); Brahma et al. (2008); Decken et al. (2006); Fronczek et al. (1990); Gossage & Jenkins (2008); Gossage et al. (2009); Hamid et al. (2005); Qian et al. (2006).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: DIRDIF96 (Beurskens et al., 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: EUCLID (Spek, 1982); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808042712/kj2105sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808042712/kj2105Isup2.hkl
The treatment of a benzene solution of commercially available bis(acetylacetonato-κ2O,O')zinc(II) (in the form of the monohydrate) with an excess of Phox leads to the formation of a clear and colourless solution. The removal of volatile components (vacuo) followed by re-crystallization (CH2Cl2/Et2O) of the resulting off white oily solid leads to the isolation of colourless crystals of the product (65%).
All the hydrogen atom positions were calculated and refined riding on their parent atoms with C—H = 0.96 Å (methyl), 0.97 Å (methylene) or 0.93 Å (aromatic) with Uiso(H) = 1.5Ueq (methyl) or Uiso(H) = 1.2Ueq (other). A racemic twin model has been used in the final
with twin ratio 0.65 (3):0.35.Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: DIRDIF96 (Beurskens et al., 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: EUCLID (Spek, 1982); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Zn(C5H7O2)2(C9H9NO)] | F(000) = 856 |
Mr = 410.77 | Dx = 1.430 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1999 reflections |
a = 9.5009 (3) Å | θ = 4.4–69.6° |
b = 14.1674 (4) Å | µ = 2.03 mm−1 |
c = 14.2407 (5) Å | T = 200 K |
V = 1916.84 (11) Å3 | Blocks, white |
Z = 4 | 0.28 × 0.15 × 0.08 mm |
Nonius KappaCCD diffractometer | 3600 independent reflections |
Radiation source: fine-focus sealed tube | 3466 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.035 |
Detector resolution: 9 pixels mm-1 | θmax = 69.6°, θmin = 4.4° |
ϕ and ω scans | h = −11→11 |
Absorption correction: part of the (Parkin et al., 1995) | model (ΔF) k = −17→17 |
Tmin = 0.542, Tmax = 0.859 | l = −17→17 |
8596 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0434P)2 + 0.5913P] where P = (Fo2 + 2Fc2)/3 |
3600 reflections | (Δ/σ)max < 0.001 |
236 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
0 constraints |
[Zn(C5H7O2)2(C9H9NO)] | V = 1916.84 (11) Å3 |
Mr = 410.77 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 9.5009 (3) Å | µ = 2.03 mm−1 |
b = 14.1674 (4) Å | T = 200 K |
c = 14.2407 (5) Å | 0.28 × 0.15 × 0.08 mm |
Nonius KappaCCD diffractometer | 3600 independent reflections |
Absorption correction: part of the refinement model (ΔF) (Parkin et al., 1995) | 3466 reflections with I > 2σ(I) |
Tmin = 0.542, Tmax = 0.859 | Rint = 0.035 |
8596 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.24 e Å−3 |
3600 reflections | Δρmin = −0.29 e Å−3 |
236 parameters |
Experimental. Absorption correction: Parkin et al., 1995. Cubic fit to sin(θ)/λ; 24 parameters 1H NMR [300 MHz: CDCl3]: δH (vs. TMS) = 1.87 [s, 12H, –CH3], 4.03 [t, J = 11.7 Hz, 2H, –CH2N], 4.48 [t, 2H, –CH2O], 5.26 [s, 2H, –CH], 7.38 [m, 4H, ArH], 7.85 [d, J = 8.8 Hz,1H, ArH]; 13C{1H}NMR (75 MHz; CDCl3): δC (vs. TMS) = 28.1, 53.7, 68.2, 99.9, 125.9, 128.2, 129.0, 132.0, 165.0(w), 193.1). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3061 (3) | −0.0086 (3) | −0.06798 (17) | 0.0483 (7) | |
H1A | 0.2514 | 0.0460 | −0.0870 | 0.058* | |
H1B | 0.2575 | −0.0654 | −0.0879 | 0.058* | |
C2 | 0.4526 (3) | −0.0046 (2) | −0.10858 (16) | 0.0433 (6) | |
H2A | 0.4650 | −0.0522 | −0.1569 | 0.052* | |
H2B | 0.4720 | 0.0570 | −0.1352 | 0.052* | |
C3 | 0.4621 (2) | −0.01785 (18) | 0.04907 (15) | 0.0316 (5) | |
C4 | 0.5407 (3) | −0.02065 (17) | 0.13820 (16) | 0.0319 (5) | |
C5 | 0.6862 (3) | −0.01280 (19) | 0.13607 (17) | 0.0374 (5) | |
H5 | 0.7331 | −0.0086 | 0.0789 | 0.045* | |
C6 | 0.7613 (3) | −0.0112 (2) | 0.21951 (18) | 0.0430 (6) | |
H6 | 0.8589 | −0.0061 | 0.2181 | 0.052* | |
C7 | 0.6925 (3) | −0.0173 (2) | 0.30468 (18) | 0.0406 (6) | |
H7 | 0.7435 | −0.0149 | 0.3604 | 0.049* | |
C8 | 0.5487 (3) | −0.0269 (2) | 0.30720 (18) | 0.0418 (6) | |
H8 | 0.5027 | −0.0317 | 0.3646 | 0.050* | |
C9 | 0.4715 (3) | −0.02941 (19) | 0.22414 (18) | 0.0378 (6) | |
H9 | 0.3743 | −0.0369 | 0.2260 | 0.045* | |
C10 | −0.1142 (4) | −0.2000 (3) | −0.0308 (2) | 0.0620 (9) | |
H10A | −0.1390 | −0.1528 | −0.0763 | 0.093* | |
H10B | −0.1980 | −0.2232 | −0.0010 | 0.093* | |
H10C | −0.0667 | −0.2512 | −0.0616 | 0.093* | |
C11 | −0.0186 (3) | −0.1573 (2) | 0.0420 (2) | 0.0426 (6) | |
C12 | 0.0308 (3) | −0.21237 (19) | 0.1148 (2) | 0.0485 (7) | |
H12 | 0.0107 | −0.2766 | 0.1119 | 0.058* | |
C13 | 0.1077 (3) | −0.18128 (18) | 0.1921 (2) | 0.0409 (6) | |
C14 | 0.1554 (4) | −0.2508 (2) | 0.2652 (2) | 0.0602 (8) | |
H14A | 0.2077 | −0.2183 | 0.3129 | 0.090* | |
H14B | 0.2141 | −0.2977 | 0.2364 | 0.090* | |
H14C | 0.0748 | −0.2807 | 0.2929 | 0.090* | |
C15 | 0.0715 (4) | 0.2718 (2) | −0.0305 (2) | 0.0611 (9) | |
H15A | 0.0125 | 0.2405 | −0.0756 | 0.092* | |
H15B | 0.1545 | 0.2951 | −0.0612 | 0.092* | |
H15C | 0.0210 | 0.3235 | −0.0030 | 0.092* | |
C16 | 0.1131 (3) | 0.20281 (19) | 0.0454 (2) | 0.0430 (7) | |
C17 | 0.1982 (3) | 0.23396 (18) | 0.1187 (2) | 0.0466 (7) | |
H17 | 0.2349 | 0.2946 | 0.1139 | 0.056* | |
C18 | 0.2333 (3) | 0.18219 (18) | 0.19881 (19) | 0.0407 (6) | |
C19 | 0.3242 (4) | 0.2251 (2) | 0.2731 (2) | 0.0591 (9) | |
H19A | 0.3384 | 0.1802 | 0.3228 | 0.089* | |
H19B | 0.2791 | 0.2804 | 0.2978 | 0.089* | |
H19C | 0.4135 | 0.2421 | 0.2466 | 0.089* | |
N1 | 0.32955 (19) | −0.00883 (16) | 0.03537 (13) | 0.0343 (4) | |
O1 | 0.54378 (17) | −0.02335 (15) | −0.02807 (12) | 0.0415 (4) | |
O2 | 0.0063 (2) | −0.06991 (14) | 0.03232 (13) | 0.0445 (5) | |
O3 | 0.1428 (2) | −0.09589 (12) | 0.20636 (12) | 0.0397 (4) | |
O4 | 0.0640 (2) | 0.12044 (14) | 0.03780 (13) | 0.0454 (5) | |
O5 | 0.1921 (2) | 0.09787 (12) | 0.21440 (13) | 0.0402 (4) | |
Zn1 | 0.14228 (3) | 0.00792 (2) | 0.10978 (2) | 0.03289 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0386 (13) | 0.078 (2) | 0.0279 (12) | −0.0026 (15) | −0.0031 (10) | 0.0011 (15) |
C2 | 0.0376 (12) | 0.0633 (17) | 0.0291 (11) | 0.0052 (13) | −0.0037 (9) | 0.0008 (15) |
C3 | 0.0341 (12) | 0.0299 (13) | 0.0307 (11) | −0.0014 (10) | 0.0023 (9) | −0.0004 (10) |
C4 | 0.0354 (12) | 0.0272 (12) | 0.0331 (11) | 0.0032 (10) | −0.0031 (9) | −0.0007 (9) |
C5 | 0.0336 (12) | 0.0412 (14) | 0.0374 (12) | 0.0001 (11) | 0.0012 (9) | 0.0030 (11) |
C6 | 0.0332 (12) | 0.0524 (17) | 0.0435 (14) | −0.0003 (13) | −0.0040 (10) | 0.0027 (14) |
C7 | 0.0400 (13) | 0.0421 (14) | 0.0398 (13) | 0.0048 (12) | −0.0103 (10) | −0.0032 (12) |
C8 | 0.0427 (14) | 0.0507 (17) | 0.0321 (12) | 0.0070 (12) | −0.0009 (10) | 0.0006 (11) |
C9 | 0.0313 (12) | 0.0457 (16) | 0.0365 (13) | 0.0020 (11) | 0.0007 (10) | −0.0022 (11) |
C10 | 0.068 (2) | 0.0600 (19) | 0.0585 (19) | −0.0184 (17) | −0.0087 (16) | −0.0061 (16) |
C11 | 0.0338 (14) | 0.0421 (15) | 0.0519 (16) | −0.0045 (12) | 0.0040 (12) | −0.0090 (12) |
C12 | 0.0532 (17) | 0.0314 (13) | 0.0610 (18) | −0.0033 (12) | −0.0049 (15) | −0.0036 (14) |
C13 | 0.0409 (15) | 0.0313 (13) | 0.0505 (15) | 0.0014 (11) | 0.0046 (12) | 0.0035 (11) |
C14 | 0.067 (2) | 0.0442 (16) | 0.069 (2) | 0.0031 (16) | −0.0091 (18) | 0.0123 (15) |
C15 | 0.080 (2) | 0.049 (2) | 0.0546 (19) | 0.0087 (17) | −0.0094 (18) | 0.0076 (15) |
C16 | 0.0487 (17) | 0.0333 (14) | 0.0471 (16) | 0.0081 (12) | 0.0045 (13) | 0.0025 (11) |
C17 | 0.0545 (16) | 0.0306 (13) | 0.0548 (18) | −0.0056 (12) | 0.0001 (14) | 0.0031 (13) |
C18 | 0.0430 (15) | 0.0346 (14) | 0.0446 (15) | −0.0032 (12) | 0.0031 (12) | −0.0030 (11) |
C19 | 0.073 (2) | 0.0449 (17) | 0.0589 (19) | −0.0137 (16) | −0.0123 (16) | −0.0033 (14) |
N1 | 0.0333 (10) | 0.0416 (11) | 0.0281 (9) | −0.0003 (10) | −0.0020 (7) | −0.0012 (9) |
O1 | 0.0335 (8) | 0.0607 (13) | 0.0303 (8) | 0.0036 (9) | 0.0014 (7) | 0.0009 (8) |
O2 | 0.0448 (11) | 0.0447 (12) | 0.0439 (10) | −0.0115 (9) | −0.0053 (8) | 0.0031 (9) |
O3 | 0.0431 (10) | 0.0378 (9) | 0.0384 (9) | −0.0065 (9) | 0.0006 (9) | 0.0031 (7) |
O4 | 0.0506 (12) | 0.0378 (10) | 0.0478 (11) | 0.0042 (9) | −0.0092 (9) | 0.0004 (8) |
O5 | 0.0517 (12) | 0.0340 (9) | 0.0350 (10) | −0.0027 (8) | 0.0014 (8) | −0.0017 (7) |
Zn1 | 0.03214 (17) | 0.03310 (17) | 0.03342 (17) | −0.00265 (14) | 0.00149 (12) | 0.00024 (14) |
C1—N1 | 1.489 (3) | C11—C12 | 1.379 (4) |
C1—C2 | 1.508 (3) | C12—C13 | 1.393 (4) |
C1—H1A | 0.9700 | C12—H12 | 0.9300 |
C1—H1B | 0.9700 | C13—O3 | 1.271 (3) |
C2—O1 | 1.461 (3) | C13—C14 | 1.503 (4) |
C2—H2A | 0.9700 | C14—H14A | 0.9600 |
C2—H2B | 0.9700 | C14—H14B | 0.9600 |
C3—N1 | 1.281 (3) | C14—H14C | 0.9600 |
C3—O1 | 1.347 (3) | C15—C16 | 1.510 (4) |
C3—C4 | 1.473 (3) | C15—H15A | 0.9600 |
C4—C5 | 1.387 (4) | C15—H15B | 0.9600 |
C4—C9 | 1.395 (4) | C15—H15C | 0.9600 |
C5—C6 | 1.387 (3) | C16—O4 | 1.261 (4) |
C5—H5 | 0.9300 | C16—C17 | 1.393 (4) |
C6—C7 | 1.381 (4) | C17—C18 | 1.397 (4) |
C6—H6 | 0.9300 | C17—H17 | 0.9300 |
C7—C8 | 1.373 (4) | C18—O5 | 1.277 (3) |
C7—H7 | 0.9300 | C18—C19 | 1.495 (4) |
C8—C9 | 1.392 (4) | C19—H19A | 0.9600 |
C8—H8 | 0.9300 | C19—H19B | 0.9600 |
C9—H9 | 0.9300 | C19—H19C | 0.9600 |
C10—C11 | 1.506 (4) | N1—Zn1 | 2.0844 (19) |
C10—H10A | 0.9600 | O2—Zn1 | 2.0253 (19) |
C10—H10B | 0.9600 | O3—Zn1 | 2.0136 (17) |
C10—H10C | 0.9600 | O4—Zn1 | 2.0359 (19) |
C11—O2 | 1.268 (4) | O5—Zn1 | 2.0169 (18) |
N1—C1—C2 | 103.94 (19) | C12—C13—C14 | 119.9 (3) |
N1—C1—H1A | 111.0 | C13—C14—H14A | 109.5 |
C2—C1—H1A | 111.0 | C13—C14—H14B | 109.5 |
N1—C1—H1B | 111.0 | H14A—C14—H14B | 109.5 |
C2—C1—H1B | 111.0 | C13—C14—H14C | 109.5 |
H1A—C1—H1B | 109.0 | H14A—C14—H14C | 109.5 |
O1—C2—C1 | 103.86 (18) | H14B—C14—H14C | 109.5 |
O1—C2—H2A | 111.0 | C16—C15—H15A | 109.5 |
C1—C2—H2A | 111.0 | C16—C15—H15B | 109.5 |
O1—C2—H2B | 111.0 | H15A—C15—H15B | 109.5 |
C1—C2—H2B | 111.0 | C16—C15—H15C | 109.5 |
H2A—C2—H2B | 109.0 | H15A—C15—H15C | 109.5 |
N1—C3—O1 | 116.6 (2) | H15B—C15—H15C | 109.5 |
N1—C3—C4 | 129.2 (2) | O4—C16—C17 | 124.9 (3) |
O1—C3—C4 | 114.17 (19) | O4—C16—C15 | 116.2 (3) |
C5—C4—C9 | 119.7 (2) | C17—C16—C15 | 118.9 (3) |
C5—C4—C3 | 118.9 (2) | C16—C17—C18 | 125.8 (2) |
C9—C4—C3 | 121.3 (2) | C16—C17—H17 | 117.1 |
C6—C5—C4 | 119.7 (2) | C18—C17—H17 | 117.1 |
C6—C5—H5 | 120.1 | O5—C18—C17 | 124.1 (3) |
C4—C5—H5 | 120.1 | O5—C18—C19 | 115.8 (3) |
C7—C6—C5 | 120.5 (2) | C17—C18—C19 | 120.2 (3) |
C7—C6—H6 | 119.7 | C18—C19—H19A | 109.5 |
C5—C6—H6 | 119.7 | C18—C19—H19B | 109.5 |
C8—C7—C6 | 120.0 (2) | H19A—C19—H19B | 109.5 |
C8—C7—H7 | 120.0 | C18—C19—H19C | 109.5 |
C6—C7—H7 | 120.0 | H19A—C19—H19C | 109.5 |
C7—C8—C9 | 120.3 (2) | H19B—C19—H19C | 109.5 |
C7—C8—H8 | 119.9 | C3—N1—C1 | 107.34 (19) |
C9—C8—H8 | 119.9 | C3—N1—Zn1 | 140.65 (16) |
C8—C9—C4 | 119.7 (2) | C1—N1—Zn1 | 112.00 (14) |
C8—C9—H9 | 120.2 | C3—O1—C2 | 106.74 (17) |
C4—C9—H9 | 120.2 | C11—O2—Zn1 | 126.22 (19) |
C11—C10—H10A | 109.5 | C13—O3—Zn1 | 125.81 (17) |
C11—C10—H10B | 109.5 | C16—O4—Zn1 | 123.14 (18) |
H10A—C10—H10B | 109.5 | C18—O5—Zn1 | 122.33 (18) |
C11—C10—H10C | 109.5 | O3—Zn1—O5 | 87.50 (7) |
H10A—C10—H10C | 109.5 | O3—Zn1—O2 | 88.62 (8) |
H10B—C10—H10C | 109.5 | O5—Zn1—O2 | 153.64 (8) |
O2—C11—C12 | 124.8 (3) | O3—Zn1—O4 | 156.45 (8) |
O2—C11—C10 | 115.4 (3) | O5—Zn1—O4 | 87.87 (8) |
C12—C11—C10 | 119.7 (3) | O2—Zn1—O4 | 85.36 (8) |
C11—C12—C13 | 126.4 (3) | O3—Zn1—N1 | 105.19 (8) |
C11—C12—H12 | 116.8 | O5—Zn1—N1 | 104.31 (8) |
C13—C12—H12 | 116.8 | O2—Zn1—N1 | 101.87 (8) |
O3—C13—C12 | 124.4 (3) | O4—Zn1—N1 | 98.33 (8) |
O3—C13—C14 | 115.7 (3) | ||
N1—C1—C2—O1 | 11.7 (3) | C10—C11—O2—Zn1 | −174.4 (2) |
N1—C3—C4—C5 | −167.8 (3) | C12—C13—O3—Zn1 | −16.7 (4) |
O1—C3—C4—C5 | 10.4 (4) | C14—C13—O3—Zn1 | 163.0 (2) |
N1—C3—C4—C9 | 11.2 (5) | C17—C16—O4—Zn1 | −17.8 (4) |
O1—C3—C4—C9 | −170.6 (2) | C15—C16—O4—Zn1 | 163.8 (2) |
C9—C4—C5—C6 | −1.7 (4) | C17—C18—O5—Zn1 | 26.4 (4) |
C3—C4—C5—C6 | 177.3 (2) | C19—C18—O5—Zn1 | −153.8 (2) |
C4—C5—C6—C7 | −0.1 (5) | C13—O3—Zn1—O5 | 174.6 (2) |
C5—C6—C7—C8 | 1.3 (5) | C13—O3—Zn1—O2 | 20.7 (2) |
C6—C7—C8—C9 | −0.7 (5) | C13—O3—Zn1—O4 | 95.8 (3) |
C7—C8—C9—C4 | −1.0 (4) | C13—O3—Zn1—N1 | −81.2 (2) |
C5—C4—C9—C8 | 2.2 (4) | C18—O5—Zn1—O3 | 167.7 (2) |
C3—C4—C9—C8 | −176.7 (2) | C18—O5—Zn1—O2 | −110.5 (2) |
O2—C11—C12—C13 | 4.3 (5) | C18—O5—Zn1—O4 | −35.4 (2) |
C10—C11—C12—C13 | −173.1 (3) | C18—O5—Zn1—N1 | 62.7 (2) |
C11—C12—C13—O3 | 0.4 (5) | C11—O2—Zn1—O3 | −16.6 (2) |
C11—C12—C13—C14 | −179.3 (3) | C11—O2—Zn1—O5 | −98.1 (3) |
O4—C16—C17—C18 | −5.6 (5) | C11—O2—Zn1—O4 | −173.8 (2) |
C15—C16—C17—C18 | 172.8 (3) | C11—O2—Zn1—N1 | 88.7 (2) |
C16—C17—C18—O5 | 0.8 (5) | C16—O4—Zn1—O3 | 110.2 (3) |
C16—C17—C18—C19 | −179.0 (3) | C16—O4—Zn1—O5 | 31.4 (2) |
O1—C3—N1—C1 | 0.8 (4) | C16—O4—Zn1—O2 | −174.1 (2) |
C4—C3—N1—C1 | 178.9 (3) | C16—O4—Zn1—N1 | −72.7 (2) |
O1—C3—N1—Zn1 | −177.5 (2) | C3—N1—Zn1—O3 | −51.4 (3) |
C4—C3—N1—Zn1 | 0.6 (5) | C1—N1—Zn1—O3 | 130.4 (2) |
C2—C1—N1—C3 | −8.1 (4) | C3—N1—Zn1—O5 | 39.9 (3) |
C2—C1—N1—Zn1 | 170.75 (19) | C1—N1—Zn1—O5 | −138.3 (2) |
N1—C3—O1—C2 | 7.2 (3) | C3—N1—Zn1—O2 | −143.2 (3) |
C4—C3—O1—C2 | −171.2 (2) | C1—N1—Zn1—O2 | 38.5 (2) |
C1—C2—O1—C3 | −11.5 (3) | C3—N1—Zn1—O4 | 129.8 (3) |
C12—C11—O2—Zn1 | 8.1 (4) | C1—N1—Zn1—O4 | −48.4 (2) |
Experimental details
Crystal data | |
Chemical formula | [Zn(C5H7O2)2(C9H9NO)] |
Mr | 410.77 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 200 |
a, b, c (Å) | 9.5009 (3), 14.1674 (4), 14.2407 (5) |
V (Å3) | 1916.84 (11) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.03 |
Crystal size (mm) | 0.28 × 0.15 × 0.08 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Part of the refinement model (ΔF) (Parkin et al., 1995) |
Tmin, Tmax | 0.542, 0.859 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8596, 3600, 3466 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.608 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.080, 1.05 |
No. of reflections | 3600 |
No. of parameters | 236 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.29 |
Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), DIRDIF96 (Beurskens et al., 1996), SHELXL97 (Sheldrick, 2008), EUCLID (Spek, 1982).
N1—Zn1 | 2.0844 (19) | O4—Zn1 | 2.0359 (19) |
O2—Zn1 | 2.0253 (19) | O5—Zn1 | 2.0169 (18) |
O3—Zn1 | 2.0136 (17) |
Acknowledgements
The authors are grateful for the support of NSERC (Canada), the Atlantic Regional Magnetic Resonance Centre (ARMRC) and for the assistance of the Spanish MEC–MCyT research project BQU2002–2326.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans, pp. 1349–1356. Google Scholar
Barclay, T. M., del Río, I., Gossage, R. A. & Jackson, S. M. (2003). Can. J. Chem. 81, 1482–1491. Web of Science CSD CrossRef CAS Google Scholar
Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1996). The DIRDIF96 Program Sstem. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands. Google Scholar
Brahma, S., Sachin, H. P., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, m140–m143. Web of Science CSD CrossRef IUCr Journals Google Scholar
Decken, A., Eisnor, C. R., Gossage, R. A. & Jackson, S. M. (2006). Inorg. Chim. Acta, 359, 1743–1753. Web of Science CSD CrossRef CAS Google Scholar
Fronczek, F. R., Ivie, M. L. & Maverick, A. W. (1990). Acta Cryst. C46, 2057–2062. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Gossage, R. A. & Jenkins, H. A. (2008). Anal. Sci. 24, x155–x156. CAS Google Scholar
Gossage, R. A., Yadav, P. N., MacInnis, T. D., Quail, J. W. & Decken, A. (2009). Can. J. Chem. 87, 368–379. Web of Science CSD CrossRef CAS Google Scholar
Hamid, M., Mazhar, M., Ali, A., Zeller, M. & Hunter, A. D. (2005). Acta Cryst. E61, m1539–m1541. Web of Science CSD CrossRef IUCr Journals Google Scholar
Itoh, H., Uemura, T., Yamaguchi, H. & Naka, S. (1989). J. Mater. Sci. 24, 3549–3552. CrossRef CAS Web of Science Google Scholar
Kaeriyama, K. (1974). Makromol. Chem. 175, 2285–2291. CrossRef CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56. CrossRef CAS Web of Science IUCr Journals Google Scholar
Qian, B.-H., Ma, W.-X., Lu, L.-D., Yang, X.-J. & Wang, X. (2006). Acta Cryst. E62, m2818–m2819. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (1982). The EUCLID Package in Computational Crystallography, edited by D. Sayre, p. 528. Oxford: Clarendon Press. Google Scholar
Williams, J. O. (1989). Angew. Chem. Int. Ed. Engl. 28, 1110–1120. CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, zinc acetylacetonate (ZAA) complexes have found significant applications in CVD technology (Itoh et al., 1989; Kaeriyama, 1974; Williams, 1989), as Lewis acids in coordination chemistry (Brahma et al., 2008; Fronczek et al., 1990; Hamid et al., 2005) and are used for the formation of inorganic polymers (Qian et al., 2006). In many cases, the ZAA species are paired with N-donor ligands to modify and tune their physical and spectroscopic properties. We recently disclosed the syntheses and structural characterization of a number of Zn coordination compounds containing monodentate 2-oxazoline ligands (Barclay et al., 2003; Decken et al., 2006; Gossage & Jenkins, 2008; Gossage et al., 2009). These materials represent a number of structural motifs around the Zn2+coordination sphere which includes the observation of pseudo-tetrahedral and distorted trigonal bipyramidal geometries. The nature of these coordination motifs are obviously influenced by both the nature of the oxazoline ligand(s) and the structure and donor properties of the various formal anions appending the Zn atom. In this report, we expand these investigations to include ZAA precursors and describe our first results in the coupling of oxazolines to a ZAA unit.
The crystal structure determination of the title compound reveals that the central Zn atom is coordinated by four O-atoms of two chelating (i.e.,κ2O,O') acetylacetonato (acac) fragments in addition to the attachment of the oxazoline ligand via the N-atom. Th Zn–N bond length is similar to that of the distorted tetrahedral (at Zn) complexes (Barclay et al., 2003) [ZnX2(Phox-κ1N)2] (Zn–N = 2.026 (2) and 2.050 (2) Å for X = Cl; Zn–N = 2.025 (3) and 2.053 (3) Å for X = Br; Phox = 2-phenyl-2-oxazoline) and the related (Decken et al., 2006) five-coordinate species [Zn(S2CNEt2-κ2S,S')2(Phox-κ1N)] (Zn–N = 2.082 (4) Å). The Zn–O bond lengths of the formally anionic acac ligands of the title material are all inequivalent but fall within a narrow range (2.01–2.04 Å).
The Zn-phox complex reported by Decken et al. (2006) possesses a coordination motif around Zn that is best described (Addison et al., 1984) as highly distorted trigonal bipyramidal (τ = 0.65) whereas the title complex is strongly disposed towards a structure of idealized square pyramidal (τ = 0.04). The τ parameter is a numerical descriptor defined as unity for pure trigonal bipyramidal structures and zero for true square pyramidal ones (Addison et al., 1984).
This coordination geometry places the N-bound oxazoline in the formal apical position of such a square pyramid. ZAA complexes containing N-donor lignads are often found to be octahedral in nature with an "O4N2" donor atom set (Brahma et al., 2008; Fronczek et al., 1990; Hamid et al., 2005; Qian et al., 2006). The title material therefore represents the more rare "O4N"-type compound.
Our structural studies have so far observed both four- and five-coordinate ZnX2 (X = halide, S2CNRR', acac) oxazoline systems (Barclay et al., 2003; Decken et al., 2006; Gossage & Jenkins, 2008; Gossage et al., 2009). Intriguingly, an octahedral Zn-oxazoline complex has yet to be observed; this suggests that perhaps the use of weakly coordinating anions (e.g., NO3-, ClO4-,etc.) and/or sterically smaller oxazolines may assist us in discovering this structural class of Zn materials. Our future work will involve such investigations.