metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­chlorido­bis­(3,4-di­methyl­pyridine)platinum(II)

aDepartment of Chemistry, St. Petersburg State University, 198504 Stary Petergof, Russian Federation, and bDepartment of Chemistry, University of Joensuu, PO Box 111, FI-80101 Joensuu, Finland
*Correspondence e-mail: matti.haukka@joensuu.fi

(Received 30 October 2008; accepted 8 December 2008; online 13 December 2008)

In the title compound, trans-[PtCl2(C7H9N)2], the PtII atom is located on an inversion center and is coordinated by two 3,4-dimethyl­pyridine ligands and two chloride ligands, resulting in a typical slightly distorted square-planar geometry. The crystallographic inversion centre forces the value of the C—N—N—C torsion angle to be linear and the 3,4-dimethyl-pyridine ligands to be coplanar.

Related literature

For related complexes see: Tessier & Rochon (1999[Tessier, C. & Rochon, F. D. (1999). Inorg. Chim. Acta, 295, 25-38.]); Eremenko et al. (1997[Eremenko, I. L., Golubichnaya, M. A., Nefedov, S. E., Sidorov, A. A., Nesterenko, D. A., Konovalova, N. P., Volkova, L. M. & Eremenko, L. T. (1997). Russ. Chem. Bull. pp. 1672-1679.]); Shaver et al. (2000[Shaver, M. P., Vogels, C. M., Wallbank, A. I., Hennigar, T. L., Biradha, K., Zaworotko, M. J. & Westcott, S. A. (2000). Can. J. Chem. 78, 568-576.]); Zordan et al. (2005[Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979-5989.]); Rochon et al. (1996[Rochon, F. D., Beauchamp, A. L. & Bensimon, C. (1996). Can. J. Chem. 74, 2121-2130.]); Colamarino & Orioli (1975[Colamarino, P. & Orioli, P. L. (1975). J. Chem. Soc. Dalton Trans. pp. 1656-1659.]). For the geometry of the pyridine ligand, see: Bond & Davies (2002[Bond, A. D. & Davies, J. E. (2002). Acta Cryst. E58, o328-o330.]). For related literature, see: Orpen et al. (1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-3.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(C7H9N)2]

  • Mr = 480.29

  • Monoclinic, P 21 /n

  • a = 7.9763 (5) Å

  • b = 7.1102 (3) Å

  • c = 13.3586 (7) Å

  • β = 98.247 (5)°

  • V = 749.77 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 9.70 mm−1

  • T = 120 (2) K

  • 0.21 × 0.20 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]) Tmin = 0.201, Tmax = 0.381

  • 17165 measured reflections

  • 2177 independent reflections

  • 1705 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.030

  • S = 1.08

  • 2177 reflections

  • 90 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—N1 2.0148 (18)
Pt1—Cl1 2.2901 (6)
N1—Pt1—Cl1 89.85 (6)

Data collection: COLLECT (Bruker–Nonius, 2004[Bruker-Nonius (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); data reduction: EVALCCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The complex trans-[PtCl2(C7H9N)2] has an inversion symmetry and the PtII atom is situated at an inversion center and it is coordinated by two 3,4-dimethylpyridine ligands and two chloro ligands and exhibit trans configuration. Such arrangement of ligands leads to the square planar geometry. In the coordination polyhedron, all angles are very close to the ideal value of 90°. The crystallographic inversion centre forces the value of the torsion angle C1—N1—N1i—Ci (symmetry operation i: -x, -y, -z) to be 180° and the the 3,4-dimethyl-pyridine ligands to be coplanar.

The geometry of 3,4-dimethylpyridine ligands resembles the geometry of the uncoordinated 3,4-dimethylpyridine, i.e. the C—C and C—N bond distances and angles in the coordinated 3,4-dimethylpyridine agree well with the expected value (Bond, Davies, 2002). The bond distance Pt–N (2.0148 (18) Å) is similar to the Pt—N bond lengths in other related compounds (Orpen et al., 1989). The Pt—Cl bond lengths agree well with the reported values (See Table 2).

All trans-[PtCl2L2] complexes given in Table 2 have the same coordination environment as in the title compound. Indeed, they are square-planar and their pyridine rings lie in the same plane. The N—Pt—N and Cl—Pt—Cl angles in all observed compounds are equal to 180°, the angles N—Pt—Cl are very close to 90°.

Related literature top

For related complexes see: Tessier & Rochon (1999); Eremenko et al. (1997); Shaver et al. (2000); Zordan et al. (2005); Rochon et al. (1996); Colamarino & Orioli (1975). For the geometry of the pyridine ligand, see: Bond & Davies (2002). For related literature, see: Orpen et al. (1989).

Experimental top

3,4-dimethylpyridine (1 ml) was added to the powder of K2[PtCl4] (0.2 g) and the resulting mixture was heated to 150°C until the complete evaporation of the 3,4-dimethylpyridine. The resulting complex was recrystallized from CHCl3 (yield 92%). Crystals were obtained by slow evaporation of CHCl3 solution. Anal. calc. for C14H18N2Cl2Pt:C, 35.01; H, 3.78; N, 5.83%. Found: C, 35.30; H, 3.96; N, 5.54%.

Refinement top

Hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95–0.98 Å, and Uĩso~ = 1.2–1.5 U~eq~(parent atom). The highest peak is located 0.87 Å from atom Pt1 and the deepest hole is located 0.83 Å from atom Pt1.

Computing details top

Data collection: COLLECT (Bruker, 2004); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
trans-Dichloridobis(3,4-dimethylpyridine)platinum(ll) top
Crystal data top
[PtCl2(C7H9N)2]F(000) = 456
Mr = 480.29Dx = 2.127 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2339 reflections
a = 7.9763 (5) Åθ = 1.0–20.0°
b = 7.1102 (3) ŵ = 9.70 mm1
c = 13.3586 (7) ÅT = 120 K
β = 98.247 (5)°Block, pale yellow
V = 749.77 (7) Å30.21 × 0.20 × 0.10 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2177 independent reflections
Radiation source: fine-focus sealed tube1705 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.033
Detector resolution: 9 pixels mm-1 pixels mm-1θmax = 30.0°, θmin = 2.8°
ϕ scans and ω scans with κ offseth = 1110
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 109
Tmin = 0.201, Tmax = 0.381l = 1818
17165 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.030H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0064P)2 + 0.7739P]
where P = (Fo2 + 2Fc2)/3
2177 reflections(Δ/σ)max < 0.001
90 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
[PtCl2(C7H9N)2]V = 749.77 (7) Å3
Mr = 480.29Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.9763 (5) ŵ = 9.70 mm1
b = 7.1102 (3) ÅT = 120 K
c = 13.3586 (7) Å0.21 × 0.20 × 0.10 mm
β = 98.247 (5)°
Data collection top
Nonius KappaCCD
diffractometer
2177 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1705 reflections with I > 2σ(I)
Tmin = 0.201, Tmax = 0.381Rint = 0.033
17165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0150 restraints
wR(F2) = 0.030H-atom parameters constrained
S = 1.08Δρmax = 0.67 e Å3
2177 reflectionsΔρmin = 0.78 e Å3
90 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.00000.00000.00000.01078 (3)
Cl10.12594 (8)0.27477 (8)0.03883 (4)0.01897 (11)
N10.0259 (2)0.0765 (3)0.14663 (13)0.0127 (4)
C10.0247 (3)0.2464 (3)0.17546 (16)0.0143 (4)
H10.07160.33240.12460.017*
C20.0115 (3)0.3015 (3)0.27567 (16)0.0141 (4)
C30.0729 (3)0.4918 (3)0.30137 (17)0.0227 (5)
H3A0.11790.55820.23900.034*
H3B0.02150.56370.33790.034*
H3C0.16230.47810.34400.034*
C40.0634 (3)0.1776 (3)0.35029 (16)0.0138 (4)
C50.0883 (3)0.2318 (4)0.45953 (16)0.0188 (5)
H5A0.16680.33830.47020.028*
H5B0.13530.12490.50060.028*
H5C0.02090.26760.47950.028*
C60.1162 (3)0.0044 (4)0.31969 (15)0.0161 (4)
H60.16770.08240.36880.019*
C70.0948 (3)0.0435 (3)0.21858 (17)0.0163 (5)
H70.12970.16450.19940.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01278 (5)0.01094 (5)0.00822 (5)0.00154 (6)0.00017 (3)0.00158 (5)
Cl10.0265 (3)0.0165 (2)0.0140 (2)0.0048 (2)0.0032 (2)0.0015 (2)
N10.0139 (9)0.0141 (8)0.0096 (8)0.0001 (8)0.0003 (7)0.0017 (7)
C10.0145 (10)0.0156 (11)0.0126 (9)0.0004 (9)0.0014 (8)0.0006 (8)
C20.0168 (11)0.0133 (11)0.0132 (10)0.0030 (9)0.0050 (8)0.0033 (8)
C30.0370 (13)0.0158 (10)0.0165 (10)0.0026 (13)0.0077 (9)0.0002 (11)
C40.0122 (10)0.0181 (11)0.0111 (10)0.0041 (9)0.0019 (8)0.0013 (8)
C50.0222 (12)0.0232 (12)0.0109 (10)0.0042 (10)0.0018 (9)0.0026 (9)
C60.0168 (9)0.0174 (10)0.0131 (9)0.0019 (11)0.0013 (7)0.0011 (11)
C70.0166 (11)0.0173 (12)0.0147 (10)0.0027 (8)0.0008 (8)0.0010 (8)
Geometric parameters (Å, º) top
Pt1—N1i2.0148 (18)C3—H3B0.9800
Pt1—N12.0148 (18)C3—H3C0.9800
Pt1—Cl1i2.2901 (6)C4—C61.382 (3)
Pt1—Cl12.2901 (6)C4—C51.495 (3)
N1—C71.343 (3)C5—H5A0.9800
N1—C11.347 (3)C5—H5B0.9800
C1—C21.384 (3)C5—H5C0.9800
C1—H10.9500C6—C71.380 (3)
C2—C41.398 (3)C6—H60.9500
C2—C31.495 (3)C7—H70.9500
C3—H3A0.9800
N1i—Pt1—N1180.0C2—C3—H3C109.5
N1i—Pt1—Cl1i89.85 (6)H3A—C3—H3C109.5
N1—Pt1—Cl1i90.15 (6)H3B—C3—H3C109.5
N1i—Pt1—Cl190.15 (6)C6—C4—C2117.88 (19)
N1—Pt1—Cl189.85 (6)C6—C4—C5121.0 (2)
Cl1i—Pt1—Cl1180.0C2—C4—C5121.1 (2)
C7—N1—C1118.30 (19)C4—C5—H5A109.5
C7—N1—Pt1119.91 (15)C4—C5—H5B109.5
C1—N1—Pt1121.79 (15)H5A—C5—H5B109.5
N1—C1—C2123.1 (2)C4—C5—H5C109.5
N1—C1—H1118.5H5A—C5—H5C109.5
C2—C1—H1118.5H5B—C5—H5C109.5
C1—C2—C4118.5 (2)C7—C6—C4120.6 (2)
C1—C2—C3119.8 (2)C7—C6—H6119.7
C4—C2—C3121.78 (19)C4—C6—H6119.7
C2—C3—H3A109.5N1—C7—C6121.6 (2)
C2—C3—H3B109.5N1—C7—H7119.2
H3A—C3—H3B109.5C6—C7—H7119.2
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[PtCl2(C7H9N)2]
Mr480.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)7.9763 (5), 7.1102 (3), 13.3586 (7)
β (°) 98.247 (5)
V3)749.77 (7)
Z2
Radiation typeMo Kα
µ (mm1)9.70
Crystal size (mm)0.21 × 0.20 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.201, 0.381
No. of measured, independent and
observed [I > 2σ(I)] reflections
17165, 2177, 1705
Rint0.033
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.030, 1.08
No. of reflections2177
No. of parameters90
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.78

Computer programs: COLLECT (Bruker, 2004), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected geometric parameters (Å, º) top
Pt1—N12.0148 (18)Pt1—Cl12.2901 (6)
N1—Pt1—Cl189.85 (6)
Geometrical parameters (Å) for the trans-[PtCl2L2] (L = pyridine-type ligand) complexes. top
LPt—NPt—ClN—Pt—Cl
4-picoline [1]2.024 (5)2.3046 (18)90.16 (12)
N-nitroxyethylnicotinamide [2]2.019 (8)2.311 (3)90.8 (2)
4-vinylpyridine [3]2.021 (3)2.3000 (9)89.9 (8)
3-fluoropyridine [4]2.0177 (20)2.3013 (12)89.86 (9)
3-chloropyridine [4]2.015 (3)2.3001 (8)90.55 (8)
3-bromopyridine [4]1.992 (6)2.3106 (16)90.40 (19)
3-iodopyridine [4]2.019 (5)2.303 (3)89.7 (2)
2,6-bis(hydroxymethyl)pyridine [5]2.040 (7)2.306 (3)90m
pyridine [6]1.977 (2)2.308 (3)88.01 (6)
In all structures Pt atom is located on an inversion centre. m = Pt is on a mirror plane. [1] Tessier & Rochon (1999); [2] Eremenko et al. (1997); [3] Shaver et al. (2000); [4] Zordan et al. (2005); [5] Rochon et al. (1996); [6] Colamarino & Orioli (1975).
 

Acknowledgements

This work was supported by the Russian Fund for Basic Research (grants 08–03-00247 and 08–03-00631).

References

First citationBond, A. D. & Davies, J. E. (2002). Acta Cryst. E58, o328–o330.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker–Nonius (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationColamarino, P. & Orioli, P. L. (1975). J. Chem. Soc. Dalton Trans. pp. 1656–1659.  CSD CrossRef Web of Science Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEremenko, I. L., Golubichnaya, M. A., Nefedov, S. E., Sidorov, A. A., Nesterenko, D. A., Konovalova, N. P., Volkova, L. M. & Eremenko, L. T. (1997). Russ. Chem. Bull. pp. 1672–1679.  Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–3.  CrossRef Web of Science Google Scholar
First citationRochon, F. D., Beauchamp, A. L. & Bensimon, C. (1996). Can. J. Chem. 74, 2121–2130.  CrossRef CAS Web of Science Google Scholar
First citationShaver, M. P., Vogels, C. M., Wallbank, A. I., Hennigar, T. L., Biradha, K., Zaworotko, M. J. & Westcott, S. A. (2000). Can. J. Chem. 78, 568–576.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTessier, C. & Rochon, F. D. (1999). Inorg. Chim. Acta, 295, 25–38.  Web of Science CSD CrossRef CAS Google Scholar
First citationZordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979–5989.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds