metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­(2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olato)zinc(II) monohydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 21 August 2008; accepted 25 November 2008; online 17 December 2008)

The crystal structure of the title compound, [Zn(C9H7N2O2)2(H2O)]·H2O, involves discrete mononuclear complex mol­ecules. The special positions on the rotation twofold axis are occupied by ZnII and O atoms of the coordinated and uncoordinated water mol­ecules. The coordination around the ZnII atom can be described as transitional from trigonal-bipyramidal to square-pyramidal. The two chelating 2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olate ligands and the coordin­ated water mol­ecule form the Zn coordination. O—H⋯O hydrogen bonds between the coordinated water mol­ecule and the ligand and between the uncoordinated water mol­ecule and the ligand dominate the crystal packing.

Related literature

For the design and synthesis of self-assembling systems with organic ligands containing N and O donors, see: Bayot et al. (2006[Bayot, D., Degand, M., Tinant, B. & Devillers, M. (2006). Inorg. Chem. Commun. 359, 1390-1394.]); Chen et al. (2007[Chen, K., Zhang, Y.-L., Feng, M.-Q. & Liu, C.-H. (2007). Acta Cryst. E63, m2033.]). For the structures of quinolin-8-ol complexes, see: Wu et al. (2006[Wu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281-m282.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H7N2O2)2(H2O)]·H2O

  • Mr = 451.73

  • Orthorhombic, P b c n

  • a = 7.7670 (16) Å

  • b = 16.045 (3) Å

  • c = 14.006 (3) Å

  • V = 1745.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 293 (2) K

  • 0.25 × 0.15 × 0.12 mm

Data collection
  • Rigaku Scxmini 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.752, Tmax = 0.831

  • 16899 measured reflections

  • 2005 independent reflections

  • 1470 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.128

  • S = 1.07

  • 2005 reflections

  • 141 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O2i 0.72 (4) 2.11 (4) 2.823 (3) 170 (5)
O4—H4B⋯O1ii 0.78 (5) 2.23 (5) 3.008 (4) 176 (6)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Considerable attention has been paid to the design and synthesis of self-assembling systems with organic ligands containing N and O donors (Bayot et al., 2006; Chen, et al., 2007). Quinolin-8-ol is one such ligand and several crystal structures of complexes containing it have been reported (Wu et al., 2006). We report here the synthesis and crystal structure of the title complex, (I) (Fig. 1). In (I), the Zn atom is penta-coordinated by two pyridine nitrogen atoms and two oxygen atoms from the hydroxy groups and water molecule (Fig. 1 and Table 1). Intermolecular O—H···O hydrogen bonds (Table 2 and Fig. 2) connect the molecules of (I) define the crystal packing.

Related literature top

For the design and synthesis of

self-assembling systems with organic ligands containing N and O donors, see: Bayot et al. (2006); Chen et al. (2007). For the structures of quinolin-8-ol complexes, see: Wu et al. (2006).

Experimental top

All chemicals used (reagent grade) were commercially available. An aqueous solution (5 ml) of ZnCl2 (13.6 mg, 0.1 mmol) was added by constant stirring to an ethanol solution (10 ml) containing 2-methyl-9-hydroxylpyrido [1,2-a]pyrimidin-4-one (17.6 mg, 0.1 mmol) then filtered off. After a few days, colourless, well shaped single crystals in the form of prisms deposited in the mother-liquid. They were separated off, washed with cold ethanol and dried in air at room temperature.

Refinement top

In general, H atoms bound to carbon were placed in geometrical positions and refined using a riding model, with C—H = 0.94Å and Uiso(H) = 1.2Ueq(C). The H of water were located from the difference map and refined freely.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule and the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code A: -x, y, 0.5 - z.]
[Figure 2] Fig. 2. Crystal packing of the compound (I). Hydrogen bonds are shown as dashed lines.
Aquabis(2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olato)zinc(II) monohydrate top
Crystal data top
[Zn(C9H7N2O2)2(H2O)]·H2OF(000) = 928
Mr = 451.73Dx = 1.719 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 13380 reflections
a = 7.7670 (16) Åθ = 3.0–27.6°
b = 16.045 (3) ŵ = 1.46 mm1
c = 14.006 (3) ÅT = 293 K
V = 1745.4 (6) Å3Prism, colourless
Z = 40.25 × 0.15 × 0.12 mm
Data collection top
Rigaku Scxmini 1K CCD area-detector
diffractometer
2005 independent reflections
Radiation source: fine-focus sealed tube1470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 8.192 pixels mm-1θmax = 27.5°, θmin = 3.3°
Thin–slice ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2020
Tmin = 0.752, Tmax = 0.831l = 1818
16899 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0591P)2 + 2.2542P]
where P = (Fo2 + 2Fc2)/3
2005 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Zn(C9H7N2O2)2(H2O)]·H2OV = 1745.4 (6) Å3
Mr = 451.73Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 7.7670 (16) ŵ = 1.46 mm1
b = 16.045 (3) ÅT = 293 K
c = 14.006 (3) Å0.25 × 0.15 × 0.12 mm
Data collection top
Rigaku Scxmini 1K CCD area-detector
diffractometer
2005 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1470 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.831Rint = 0.070
16899 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.50 e Å3
2005 reflectionsΔρmin = 0.56 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0089 (4)0.1222 (2)0.4495 (2)0.0220 (7)
C20.1741 (4)0.0991 (2)0.4103 (2)0.0242 (7)
C30.2932 (5)0.0659 (2)0.4714 (3)0.0290 (8)
H3A0.40120.05080.44840.035*
C40.2541 (5)0.0543 (2)0.5686 (2)0.0301 (8)
H4A0.33660.03170.60920.036*
C50.0987 (5)0.0754 (2)0.6036 (2)0.0308 (8)
H5A0.07470.06680.66800.037*
C60.1875 (5)0.1347 (2)0.5853 (2)0.0287 (8)
C70.3026 (5)0.1688 (2)0.5193 (3)0.0301 (8)
H7A0.41050.18590.54020.036*
C80.2616 (4)0.1779 (2)0.4246 (2)0.0240 (7)
C90.3867 (5)0.2129 (2)0.3541 (3)0.0332 (9)
H9A0.33460.21430.29200.050*
H9B0.48770.17840.35230.050*
H9C0.41820.26840.37290.050*
N10.1066 (4)0.15560 (17)0.39001 (19)0.0230 (6)
N20.0251 (3)0.10953 (18)0.54498 (19)0.0235 (6)
O10.1984 (3)0.11255 (17)0.31857 (17)0.0322 (6)
O20.2095 (4)0.12461 (18)0.67183 (17)0.0383 (7)
Zn10.00000.16492 (4)0.25000.0259 (2)
O30.00000.2946 (3)0.25000.0420 (10)
O40.50000.0113 (3)0.75000.0529 (12)
H4B0.420 (7)0.038 (4)0.765 (4)0.08 (2)*
H3B0.069 (6)0.320 (3)0.232 (3)0.046 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0236 (16)0.0234 (15)0.0189 (15)0.0037 (15)0.0017 (14)0.0002 (12)
C20.0215 (17)0.0284 (18)0.0225 (17)0.0009 (14)0.0003 (14)0.0009 (14)
C30.0224 (17)0.037 (2)0.0275 (18)0.0033 (15)0.0014 (15)0.0022 (15)
C40.0279 (19)0.037 (2)0.0254 (18)0.0065 (16)0.0099 (15)0.0032 (16)
C50.035 (2)0.038 (2)0.0197 (16)0.0017 (17)0.0052 (16)0.0021 (15)
C60.0291 (19)0.0329 (19)0.0241 (17)0.0021 (16)0.0055 (15)0.0049 (15)
C70.0211 (17)0.036 (2)0.0335 (18)0.0014 (15)0.0031 (15)0.0063 (16)
C80.0206 (16)0.0242 (17)0.0273 (17)0.0008 (13)0.0030 (14)0.0064 (14)
C90.030 (2)0.040 (2)0.0295 (18)0.0102 (17)0.0041 (16)0.0066 (16)
N10.0222 (15)0.0285 (15)0.0185 (13)0.0024 (12)0.0024 (11)0.0012 (11)
N20.0234 (16)0.0295 (15)0.0177 (13)0.0005 (12)0.0015 (11)0.0008 (11)
O10.0234 (13)0.0505 (16)0.0228 (12)0.0071 (12)0.0026 (10)0.0072 (11)
O20.0387 (16)0.0545 (17)0.0218 (13)0.0045 (14)0.0078 (11)0.0000 (12)
Zn10.0240 (3)0.0347 (3)0.0191 (3)0.0000.0024 (2)0.000
O30.040 (2)0.032 (2)0.054 (3)0.0000.021 (2)0.000
O40.046 (3)0.059 (3)0.054 (3)0.0000.000 (3)0.000
Geometric parameters (Å, º) top
C1—N11.336 (4)C7—C81.372 (5)
C1—N21.378 (4)C7—H7A0.9300
C1—C21.444 (5)C8—N11.346 (4)
C2—O11.316 (4)C8—C91.494 (5)
C2—C31.368 (5)C9—H9A0.9600
C3—C41.408 (5)C9—H9B0.9600
C3—H3A0.9300C9—H9C0.9600
C4—C51.346 (5)N1—Zn12.134 (3)
C4—H4A0.9300O1—Zn12.001 (2)
C5—N21.379 (4)Zn1—O1i2.001 (2)
C5—H5A0.9300Zn1—O32.081 (4)
C6—O21.234 (4)Zn1—N1i2.134 (3)
C6—C71.398 (5)O3—H3B0.72 (4)
C6—N21.440 (4)O4—H4B0.78 (5)
N1—C1—N2122.4 (3)C8—C9—H9A109.5
N1—C1—C2117.5 (3)C8—C9—H9B109.5
N2—C1—C2120.1 (3)H9A—C9—H9B109.5
O1—C2—C3125.2 (3)C8—C9—H9C109.5
O1—C2—C1117.2 (3)H9A—C9—H9C109.5
C3—C2—C1117.6 (3)H9B—C9—H9C109.5
C2—C3—C4120.7 (3)C1—N1—C8118.9 (3)
C2—C3—H3A119.7C1—N1—Zn1109.9 (2)
C4—C3—H3A119.7C8—N1—Zn1131.2 (2)
C5—C4—C3120.9 (3)C1—N2—C5120.2 (3)
C5—C4—H4A119.6C1—N2—C6120.5 (3)
C3—C4—H4A119.6C5—N2—C6119.3 (3)
C4—C5—N2120.5 (3)C2—O1—Zn1115.3 (2)
C4—C5—H5A119.7O1—Zn1—O1i130.33 (16)
N2—C5—H5A119.7O1—Zn1—O3114.83 (8)
O2—C6—C7127.8 (4)O1i—Zn1—O3114.83 (8)
O2—C6—N2118.0 (3)O1—Zn1—N1i96.48 (10)
C7—C6—N2114.2 (3)O1i—Zn1—N1i80.11 (10)
C8—C7—C6122.2 (3)O3—Zn1—N1i94.02 (7)
C8—C7—H7A118.9O1—Zn1—N180.11 (10)
C6—C7—H7A118.9O1i—Zn1—N196.48 (10)
N1—C8—C7121.8 (3)O3—Zn1—N194.02 (7)
N1—C8—C9116.4 (3)N1i—Zn1—N1171.96 (15)
C7—C8—C9121.8 (3)Zn1—O3—H3B125 (4)
N1—C1—C2—O10.1 (5)N1—C1—N2—C62.0 (5)
N2—C1—C2—O1179.8 (3)C2—C1—N2—C6178.2 (3)
N1—C1—C2—C3179.2 (3)C4—C5—N2—C10.2 (5)
N2—C1—C2—C30.9 (5)C4—C5—N2—C6177.5 (3)
O1—C2—C3—C4179.8 (3)O2—C6—N2—C1177.5 (3)
C1—C2—C3—C40.6 (5)C7—C6—N2—C12.0 (5)
C2—C3—C4—C50.1 (6)O2—C6—N2—C50.1 (5)
C3—C4—C5—N20.5 (6)C7—C6—N2—C5179.7 (3)
O2—C6—C7—C8178.9 (4)C3—C2—O1—Zn1178.4 (3)
N2—C6—C7—C80.6 (5)C1—C2—O1—Zn10.9 (4)
C6—C7—C8—N11.1 (5)C2—O1—Zn1—O1i91.1 (2)
C6—C7—C8—C9178.7 (3)C2—O1—Zn1—O388.9 (2)
N2—C1—N1—C80.2 (5)C2—O1—Zn1—N1i173.6 (2)
C2—C1—N1—C8179.9 (3)C2—O1—Zn1—N10.9 (2)
N2—C1—N1—Zn1179.5 (2)C1—N1—Zn1—O10.8 (2)
C2—C1—N1—Zn10.7 (4)C8—N1—Zn1—O1179.9 (3)
C7—C8—N1—C11.3 (5)C1—N1—Zn1—O1i130.7 (2)
C9—C8—N1—C1178.5 (3)C8—N1—Zn1—O1i50.2 (3)
C7—C8—N1—Zn1177.8 (2)C1—N1—Zn1—O3113.7 (2)
C9—C8—N1—Zn12.4 (4)C8—N1—Zn1—O365.4 (3)
N1—C1—N2—C5179.6 (3)C1—N1—Zn1—N1i66.3 (2)
C2—C1—N2—C50.6 (5)C8—N1—Zn1—N1i114.6 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O2ii0.72 (4)2.11 (4)2.823 (3)170 (5)
O4—H4B···O1iii0.78 (5)2.23 (5)3.008 (4)176 (6)
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C9H7N2O2)2(H2O)]·H2O
Mr451.73
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)7.7670 (16), 16.045 (3), 14.006 (3)
V3)1745.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.25 × 0.15 × 0.12
Data collection
DiffractometerRigaku Scxmini 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.752, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
16899, 2005, 1470
Rint0.070
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.07
No. of reflections2005
No. of parameters141
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.56

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O2i0.72 (4)2.11 (4)2.823 (3)170 (5)
O4—H4B···O1ii0.78 (5)2.23 (5)3.008 (4)176 (6)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y, z+1/2.
 

References

First citationBayot, D., Degand, M., Tinant, B. & Devillers, M. (2006). Inorg. Chem. Commun. 359, 1390–1394.  CAS Google Scholar
First citationChen, K., Zhang, Y.-L., Feng, M.-Q. & Liu, C.-H. (2007). Acta Cryst. E63, m2033.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281–m282.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds