organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Tri­methyl­sil­oxy)adamantane-2-carbo­nitrile

aLudwig-Maximilians Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 7 November 2008; accepted 22 December 2008; online 24 December 2008)

In the crystal structure of the title compound, C14H23NOSi, cyclic dimeric units are established by two very weak hydrogen bonds of the type C—H⋯N with an H⋯N distance which is only slightly shorter than the sum of the van der Waals radii of 2.75 Å. The graph-set descriptor on the unitary level is R22(14) for the cyclic dimer.

Related literature

For a general synthesis of trimethyl­silan­yloxy-substituted cyano­hydrines, see Evans et al. (1974[Evans, D. A., Carroll, G. L. & Truesdale, L. K. (1974). J. Org. Chem. 39, 914-917.]). For the crystal structure of a related compound, see Hickmott et al. (1985[Hickmott, P. W., Wood, S. & Murray-Rust, P. (1985). J. Chem. Soc. Perkin Trans. 1, pp. 2033-2038.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C14H23NOSi

  • Mr = 249.42

  • Triclinic, [P \overline 1]

  • a = 6.712 (2) Å

  • b = 9.440 (3) Å

  • c = 12.439 (2) Å

  • α = 106.19 (2)°

  • β = 102.35 (2)°

  • γ = 100.34 (3)°

  • V = 715.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 200 (2) K

  • 0.38 × 0.34 × 0.18 mm

Data collection
  • Oxford Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, United Kingdom.]) Tmin = 0.91, Tmax = 0.97

  • 5687 measured reflections

  • 2872 independent reflections

  • 2097 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.06

  • 2872 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Ni 1.00 2.68 3.516 (3) 141
Symmetry code: (i) -x+2, -y+2, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, United Kingdom.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, United Kingdom.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

2-Trimethylsilanyloxy-adamantane-2-carbonitrile was prepared as an intermediate in the synthesis of (2-adamantyl)-glycolic acid.

In the crystal packing of the title compound, C14H23NOSi, dimeric units are established by two very weak hydrogen bonds of the type C–H···N with an H···N distance of 2.68 Å, which is only slightly shorter than the sum of the van-der-Waals radii of 2.75 Å (see Fig. 2).

The graph-set descriptor on the unitary level for the cyclic dimer is R22(14) (Etter et al., 1990; Bernstein et al., 1995).

The packing of the title compound is shown in Figure 3.

In the molecule the cyano group and the trimethylsilanyloxy group reside on the same C atom resembling a similar compound apparent in the literature (Hickmott et al., 1985). The methyl groups on the silicon atom adopt a nearly staggered conformation with respect to the substituents on the functionalized carbon atom. Bond lengths and angles in the carbocycle are in good agreement with the ones observed for other adamantane-derived compounds.

Related literature top

For a general synthesis of trimethylsilanyloxy-substituted cyanohydrines, see Evans et al. (1974). For the crystal structure of a related compound, see Hickmott et al. (1985). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

The title compound was prepared in adoption of a published procedure (Evans et al., 1974) upon Lewis-acid catalyzed addition of trimethylsilylcyanide to 2-adamantanone.

Crystals suitable for X-ray analysis were obtained directly from the crystallized reaction product obtained after distillation under reduced pressure.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 1.00 Å for bridgehead C atoms, C—H 0.99 Å for methylene groups and C—H 0.98 Å for methyl groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C) for bridgehead C atoms and methylene groups and 1.5Ueq(C) for methyl groups.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. Intermolecular interactions in the crystal structure of the title compound, viewed approximately along [-1 0 0].
[Figure 3] Fig. 3. The packing of the title compound, viewed along [-1 0 0].
2-(Trimethylsiloxy)adamantane-2-carbonitrile top
Crystal data top
C14H23NOSiZ = 2
Mr = 249.42F(000) = 272
Triclinic, P1Dx = 1.159 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.712 (2) ÅCell parameters from 3060 reflections
b = 9.440 (3) Åθ = 4.1–26.3°
c = 12.439 (2) ŵ = 0.15 mm1
α = 106.19 (2)°T = 200 K
β = 102.35 (2)°Block, colourless
γ = 100.34 (3)°0.38 × 0.34 × 0.18 mm
V = 715.0 (4) Å3
Data collection top
Oxford Xcalibur
diffractometer
2872 independent reflections
Radiation source: fine-focus sealed tube2097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 26.3°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2005)
h = 88
Tmin = 0.91, Tmax = 0.97k = 118
5687 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0562P)2]
where P = (Fo2 + 2Fc2)/3
2872 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C14H23NOSiγ = 100.34 (3)°
Mr = 249.42V = 715.0 (4) Å3
Triclinic, P1Z = 2
a = 6.712 (2) ÅMo Kα radiation
b = 9.440 (3) ŵ = 0.15 mm1
c = 12.439 (2) ÅT = 200 K
α = 106.19 (2)°0.38 × 0.34 × 0.18 mm
β = 102.35 (2)°
Data collection top
Oxford Xcalibur
diffractometer
2872 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2005)
2097 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.97Rint = 0.019
5687 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
2872 reflectionsΔρmin = 0.18 e Å3
157 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si0.23305 (7)0.50326 (5)0.26051 (3)0.03296 (15)
O0.32961 (14)0.66707 (11)0.24268 (8)0.0301 (3)
N0.6710 (3)0.7967 (2)0.51049 (13)0.0652 (5)
C10.6875 (2)0.72644 (17)0.22407 (13)0.0330 (4)
H10.70900.62660.23040.040*
C20.5289 (2)0.77526 (16)0.29081 (12)0.0284 (3)
C30.5002 (2)0.93025 (16)0.28158 (13)0.0345 (4)
H30.39950.96440.32560.041*
C40.4126 (2)0.91123 (17)0.15282 (13)0.0363 (4)
H410.27550.83370.11980.044*
H420.38881.00900.14540.044*
C50.5668 (3)0.86187 (18)0.08534 (14)0.0407 (4)
H50.50840.85000.00140.049*
C60.5977 (3)0.70911 (17)0.09590 (13)0.0380 (4)
H610.46080.63130.06290.046*
H620.69560.67460.05120.046*
C70.8992 (2)0.8475 (2)0.27499 (16)0.0479 (4)
H710.95670.86020.35830.057*
H721.00160.81420.23320.057*
C80.7134 (3)1.04922 (18)0.33150 (16)0.0516 (5)
H810.77191.06120.41460.062*
H820.69411.14900.32670.062*
C90.7790 (3)0.9803 (2)0.13533 (18)0.0560 (5)
H910.87840.94730.09120.067*
H920.76081.07920.12790.067*
C100.8675 (3)0.9988 (2)0.26269 (17)0.0536 (5)
H101.00581.07740.29540.064*
C110.6099 (2)0.78913 (19)0.41541 (14)0.0416 (4)
C120.4270 (3)0.38626 (19)0.26501 (15)0.0512 (5)
H1210.46270.36060.19080.077*
H1220.36600.29220.27810.077*
H1230.55490.44410.32860.077*
C130.0044 (3)0.40872 (19)0.13013 (14)0.0471 (4)
H1310.09280.47460.12730.071*
H1320.06870.31140.13410.071*
H1330.05330.39010.05990.071*
C140.1455 (3)0.5381 (2)0.39525 (15)0.0545 (5)
H1410.26770.59220.46330.082*
H1420.07940.44040.40140.082*
H1430.04340.60020.39230.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si0.0365 (3)0.0333 (3)0.0339 (3)0.00931 (19)0.01383 (19)0.01512 (19)
O0.0236 (5)0.0318 (6)0.0344 (6)0.0042 (4)0.0052 (4)0.0141 (5)
N0.0664 (11)0.0837 (12)0.0349 (9)0.0152 (9)0.0005 (8)0.0168 (8)
C10.0293 (8)0.0309 (8)0.0452 (9)0.0136 (7)0.0133 (7)0.0164 (7)
C20.0249 (7)0.0287 (8)0.0268 (7)0.0055 (6)0.0017 (6)0.0066 (6)
C30.0319 (8)0.0254 (8)0.0398 (9)0.0106 (7)0.0049 (7)0.0027 (7)
C40.0312 (8)0.0272 (8)0.0483 (10)0.0073 (7)0.0021 (7)0.0161 (7)
C50.0407 (9)0.0429 (10)0.0436 (9)0.0084 (8)0.0121 (8)0.0235 (8)
C60.0413 (9)0.0375 (9)0.0408 (9)0.0128 (7)0.0209 (7)0.0127 (7)
C70.0267 (8)0.0544 (11)0.0670 (12)0.0122 (8)0.0097 (8)0.0280 (9)
C80.0480 (11)0.0279 (9)0.0594 (12)0.0033 (8)0.0066 (9)0.0050 (8)
C90.0388 (10)0.0535 (12)0.0840 (14)0.0039 (9)0.0149 (10)0.0419 (11)
C100.0253 (8)0.0424 (10)0.0826 (14)0.0048 (7)0.0007 (9)0.0251 (10)
C110.0385 (9)0.0457 (10)0.0362 (10)0.0126 (8)0.0051 (8)0.0095 (8)
C120.0609 (12)0.0443 (10)0.0617 (12)0.0231 (9)0.0235 (10)0.0273 (9)
C130.0434 (10)0.0402 (10)0.0525 (11)0.0013 (8)0.0119 (8)0.0158 (8)
C140.0629 (12)0.0661 (12)0.0489 (11)0.0169 (10)0.0317 (10)0.0285 (9)
Geometric parameters (Å, º) top
Si—O1.6594 (11)C6—H610.9900
Si—C131.8491 (19)C6—H620.9900
Si—C121.8540 (17)C7—C101.526 (2)
Si—C141.8562 (16)C7—H710.9900
O—C21.4200 (17)C7—H720.9900
N—C111.143 (2)C8—C101.535 (2)
C1—C61.530 (2)C8—H810.9900
C1—C71.535 (2)C8—H820.9900
C1—C21.5411 (19)C9—C101.516 (3)
C1—H11.0000C9—H910.9900
C2—C111.489 (2)C9—H920.9900
C2—C31.5415 (19)C10—H101.0000
C3—C41.531 (2)C12—H1210.9800
C3—C81.532 (2)C12—H1220.9800
C3—H31.0000C12—H1230.9800
C4—C51.523 (2)C13—H1310.9800
C4—H410.9900C13—H1320.9800
C4—H420.9900C13—H1330.9800
C5—C91.525 (2)C14—H1410.9800
C5—C61.530 (2)C14—H1420.9800
C5—H51.0000C14—H1430.9800
O—Si—C13102.98 (7)C10—C7—C1109.55 (13)
O—Si—C12111.91 (7)C10—C7—H71109.8
C13—Si—C12110.75 (8)C1—C7—H71109.8
O—Si—C14110.55 (7)C10—C7—H72109.8
C13—Si—C14110.49 (9)C1—C7—H72109.8
C12—Si—C14109.99 (8)H71—C7—H72108.2
C2—O—Si133.06 (9)C3—C8—C10109.94 (13)
C6—C1—C7109.53 (13)C3—C8—H81109.7
C6—C1—C2108.61 (11)C10—C8—H81109.7
C7—C1—C2110.13 (13)C3—C8—H82109.7
C6—C1—H1109.5C10—C8—H82109.7
C7—C1—H1109.5H81—C8—H82108.2
C2—C1—H1109.5C10—C9—C5109.63 (15)
O—C2—C11108.81 (12)C10—C9—H91109.7
O—C2—C1111.04 (11)C5—C9—H91109.7
C11—C2—C1109.74 (12)C10—C9—H92109.7
O—C2—C3108.61 (11)C5—C9—H92109.7
C11—C2—C3109.88 (12)H91—C9—H92108.2
C1—C2—C3108.74 (12)C9—C10—C7110.15 (16)
C4—C3—C8109.24 (14)C9—C10—C8110.01 (14)
C4—C3—C2108.53 (12)C7—C10—C8108.35 (15)
C8—C3—C2109.88 (12)C9—C10—H10109.4
C4—C3—H3109.7C7—C10—H10109.4
C8—C3—H3109.7C8—C10—H10109.4
C2—C3—H3109.7N—C11—C2178.65 (18)
C5—C4—C3110.11 (12)Si—C12—H121109.5
C5—C4—H41109.6Si—C12—H122109.5
C3—C4—H41109.6H121—C12—H122109.5
C5—C4—H42109.6Si—C12—H123109.5
C3—C4—H42109.6H121—C12—H123109.5
H41—C4—H42108.2H122—C12—H123109.5
C4—C5—C9110.22 (14)Si—C13—H131109.5
C4—C5—C6108.75 (12)Si—C13—H132109.5
C9—C5—C6109.20 (14)H131—C13—H132109.5
C4—C5—H5109.6Si—C13—H133109.5
C9—C5—H5109.6H131—C13—H133109.5
C6—C5—H5109.6H132—C13—H133109.5
C1—C6—C5109.87 (12)Si—C14—H141109.5
C1—C6—H61109.7Si—C14—H142109.5
C5—C6—H61109.7H141—C14—H142109.5
C1—C6—H62109.7Si—C14—H143109.5
C5—C6—H62109.7H141—C14—H143109.5
H61—C6—H62108.2H142—C14—H143109.5
C13—Si—O—C2160.82 (12)C3—C4—C5—C660.43 (16)
C12—Si—O—C241.84 (13)C7—C1—C6—C559.17 (16)
C14—Si—O—C281.13 (13)C2—C1—C6—C561.14 (16)
Si—O—C2—C1137.90 (16)C4—C5—C6—C160.41 (17)
Si—O—C2—C183.00 (14)C9—C5—C6—C159.90 (18)
Si—O—C2—C3157.48 (10)C6—C1—C7—C1058.48 (17)
C6—C1—C2—O58.21 (15)C2—C1—C7—C1060.90 (18)
C7—C1—C2—O178.15 (11)C4—C3—C8—C1058.61 (17)
C6—C1—C2—C11178.56 (12)C2—C3—C8—C1060.35 (18)
C7—C1—C2—C1161.50 (17)C4—C5—C9—C1059.23 (18)
C6—C1—C2—C361.23 (15)C6—C5—C9—C1060.17 (18)
C7—C1—C2—C358.71 (15)C5—C9—C10—C760.26 (19)
O—C2—C3—C459.91 (15)C5—C9—C10—C859.12 (19)
C11—C2—C3—C4178.82 (12)C1—C7—C10—C959.28 (19)
C1—C2—C3—C461.05 (15)C1—C7—C10—C861.10 (18)
O—C2—C3—C8179.29 (12)C3—C8—C10—C959.34 (19)
C11—C2—C3—C861.79 (17)C3—C8—C10—C761.12 (18)
C1—C2—C3—C858.34 (16)O—C2—C11—N44 (7)
C8—C3—C4—C558.71 (16)C1—C2—C11—N77 (7)
C2—C3—C4—C561.09 (16)C3—C2—C11—N163 (7)
C3—C4—C5—C959.25 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Ni1.002.683.516 (3)141
Symmetry code: (i) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H23NOSi
Mr249.42
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)6.712 (2), 9.440 (3), 12.439 (2)
α, β, γ (°)106.19 (2), 102.35 (2), 100.34 (3)
V3)715.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.38 × 0.34 × 0.18
Data collection
DiffractometerOxford Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2005)
Tmin, Tmax0.91, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
5687, 2872, 2097
Rint0.019
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.06
No. of reflections2872
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Ni1.002.683.516 (3)141
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

The authors thank Professor Thomas M. Klapötke for generous allocation of diffractometer time.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEvans, D. A., Carroll, G. L. & Truesdale, L. K. (1974). J. Org. Chem. 39, 914–917.  CrossRef CAS Web of Science Google Scholar
First citationHickmott, P. W., Wood, S. & Murray-Rust, P. (1985). J. Chem. Soc. Perkin Trans. 1, pp. 2033–2038.  CSD CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, United Kingdom.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds