organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(1H-Imidazol-1-ylsulfon­yl)-N,N-di­methyl­naphthalen-1-amine

aSchool of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China
*Correspondence e-mail: zy0340907@yahoo.com.cn

(Received 26 November 2008; accepted 3 December 2008; online 10 December 2008)

In the title mol­ecule, C15H15N3O2S, the dihedral angle between the naphthalene ring system and the imidazole ring is 86.1 (2)°. In the crystal structure, weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds, as well as weak C—H⋯π inter­actions, connect mol­ecules, forming a two-dimensional network.

Related literature

For background information, see: Corradini et al. (1997[Corradini, R., Dossena, A., Galaverna, G., Marchelli, R., Panagia, A. & Sarto, G. (1997). J. Org. Chem. 62, 6283-6289.]); Kavallieratos et al. (2005[Kavallieratos, K., Rosenberg, J. M., Chen, W.-Z. & Ren, T. (2005). J. Am. Chem. Soc. 127, 6514-6515.]); Koike et al. (1996[Koike, T., Watanabe, T., Aoki, S., Kimura, E. & Shiro, M. (1996). J. Am. Chem. Soc. 118, 12696-12703.]). For the synthesis, see: Hilderbrand et al. (2004[Hilderbrand, S. A., Lim, M. H. & Lippard, S. J. (2004). J. Am. Chem. Soc. 126, 4972-4978.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3O2S

  • Mr = 301.36

  • Orthorhombic, P b c a

  • a = 16.3707 (16) Å

  • b = 7.7928 (7) Å

  • c = 22.088 (2) Å

  • V = 2817.8 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 150 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.944, Tmax = 0.977

  • 9800 measured reflections

  • 2577 independent reflections

  • 2196 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.07

  • 2577 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2 0.95 2.42 3.057 (2) 125
C15—H15⋯N3i 0.95 2.45 3.395 (3) 173
C14—H14⋯O2ii 0.95 2.45 3.358 (3) 161
C13—H13⋯N1iii 0.95 2.57 3.506 (2) 169
C10—H10⋯Cgiv 0.95 2.82 3.302 (2) 113
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) x, y-1, z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]. Cg is the centroid of the C3–C7/C12 ring.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Dansyl chloride is widely used as a fluorescent label in immunofluorescence methods and in yielding fluorescent N-terminal amino acids and peptide derivatives. Some dansyl chloride derivatives are also used as fluorescent probes, which can detect trace metal ions such as Pb2+, Cu2+, Zn2+ (Koike et al., 1996; Corradini et al., 1997; Kavallieratos et al., 2005). We are interested in preparing fluorescent drug or ligand analogs that are expected to bind to hydrophobic sites in proteins or membranes. With this mind, the title compound, (I), was prepared and we report the crystal stucture herein.

In the molecular structure (Fig. 1), the dihedral angle between the naphthalene ring and the imidazole ring is 86.1 (2)°. All bond lengths and bond angles are as expected. In the crystal structure (Fig.2), the molecules are linked by C–H···O and C—H···N hydrogen bonds (Table 1) and C—H···π interactions into a two-dimension network.

Related literature top

For background information, see: Corradini et al. (1997); Kavallieratos et al. (2005); Koike et al. (1996). For the synthesis, see: Hilderbrand et al. (2004). Cg is the centroid of the C3–C7/C12 ring.

Experimental top

Compound (I) was synthesized according to a literature procedure (Hilderbrand et al., 2004). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution of (I) at room temperature.

Refinement top

All H atoms were placed in idealized positions [CH(methyl)=0.98 Å and C—H(aromatic) =0.95 Å] and included in the refinement in the riding-model approximation, with Uiso(Hmethyl)= 1.5Ueq(C) and Uiso(Haromatic) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing weak hydrogen bonds as dashed lines.
5-(1H-Imidazol-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine top
Crystal data top
C15H15N3O2SF(000) = 1264
Mr = 301.36Dx = 1.421 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3852 reflections
a = 16.3707 (16) Åθ = 2.2–28.2°
b = 7.7928 (7) ŵ = 0.24 mm1
c = 22.088 (2) ÅT = 150 K
V = 2817.8 (5) Å3Block, red
Z = 80.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
2577 independent reflections
Radiation source: fine-focus sealed tube2196 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1219
Tmin = 0.944, Tmax = 0.977k = 79
9800 measured reflectionsl = 2625
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.6727P]
where P = (Fo2 + 2Fc2)/3
2577 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C15H15N3O2SV = 2817.8 (5) Å3
Mr = 301.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.3707 (16) ŵ = 0.24 mm1
b = 7.7928 (7) ÅT = 150 K
c = 22.088 (2) Å0.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
2577 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2196 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.977Rint = 0.058
9800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.07Δρmax = 0.50 e Å3
2577 reflectionsΔρmin = 0.31 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11008 (13)0.0608 (3)0.10523 (10)0.0274 (5)
H1A0.16120.11470.09220.041*
H1B0.07210.05580.07100.041*
H1C0.08580.12850.13800.041*
C20.18098 (13)0.2027 (3)0.08508 (9)0.0319 (5)
H2A0.18770.32210.09810.048*
H2B0.15740.20020.04430.048*
H2C0.23430.14570.08460.048*
C30.14436 (11)0.1301 (3)0.18942 (8)0.0216 (4)
C40.21791 (12)0.1896 (3)0.21123 (9)0.0247 (5)
H40.26020.21840.18360.030*
C50.23134 (11)0.2084 (3)0.27371 (9)0.0255 (5)
H50.28250.25070.28740.031*
C60.17273 (11)0.1673 (3)0.31536 (9)0.0234 (4)
H60.18400.17730.35740.028*
C70.09481 (11)0.1098 (2)0.29548 (9)0.0193 (4)
C80.02739 (11)0.0735 (2)0.33507 (9)0.0193 (4)
C90.04868 (11)0.0311 (3)0.31351 (9)0.0214 (4)
H90.09170.00630.34100.026*
C100.06277 (11)0.0244 (3)0.25099 (9)0.0221 (4)
H100.11590.00070.23600.026*
C110.00036 (11)0.0539 (2)0.21174 (9)0.0207 (4)
H110.01070.04760.16950.025*
C120.08007 (11)0.0938 (2)0.23193 (9)0.0201 (4)
C130.06482 (12)0.2592 (3)0.42799 (9)0.0235 (5)
H130.01120.29760.41870.028*
C140.13037 (12)0.3564 (3)0.44095 (9)0.0280 (5)
H140.13020.47830.44200.034*
C150.17381 (12)0.0973 (3)0.44626 (9)0.0238 (5)
H150.20770.00050.45140.029*
N10.12680 (9)0.1138 (2)0.12696 (7)0.0224 (4)
N20.09210 (9)0.0906 (2)0.43108 (7)0.0189 (4)
N30.19833 (10)0.2548 (2)0.45265 (8)0.0295 (4)
O10.04379 (8)0.04896 (19)0.43910 (6)0.0269 (4)
O20.08176 (8)0.22535 (18)0.43451 (6)0.0274 (4)
S10.03535 (3)0.08123 (6)0.41480 (2)0.02021 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0290 (10)0.0248 (13)0.0283 (11)0.0020 (9)0.0010 (9)0.0029 (9)
C20.0303 (11)0.0407 (14)0.0248 (10)0.0036 (10)0.0055 (9)0.0055 (10)
C30.0222 (9)0.0177 (11)0.0251 (10)0.0019 (8)0.0009 (8)0.0024 (8)
C40.0194 (9)0.0245 (12)0.0302 (11)0.0013 (8)0.0048 (8)0.0025 (9)
C50.0178 (9)0.0250 (12)0.0337 (11)0.0014 (8)0.0041 (8)0.0010 (9)
C60.0226 (9)0.0224 (12)0.0251 (10)0.0001 (8)0.0045 (8)0.0002 (8)
C70.0199 (9)0.0163 (11)0.0218 (10)0.0023 (8)0.0009 (7)0.0015 (8)
C80.0220 (9)0.0158 (11)0.0201 (10)0.0016 (8)0.0015 (7)0.0013 (8)
C90.0208 (9)0.0197 (11)0.0238 (10)0.0010 (8)0.0026 (8)0.0008 (8)
C100.0181 (9)0.0211 (11)0.0270 (11)0.0021 (8)0.0042 (8)0.0001 (9)
C110.0227 (10)0.0205 (12)0.0190 (9)0.0003 (8)0.0044 (8)0.0015 (8)
C120.0192 (9)0.0164 (11)0.0247 (11)0.0015 (8)0.0011 (8)0.0021 (8)
C130.0246 (10)0.0234 (12)0.0226 (10)0.0060 (9)0.0018 (8)0.0014 (8)
C140.0337 (11)0.0187 (12)0.0316 (11)0.0002 (9)0.0014 (9)0.0017 (9)
C150.0200 (9)0.0247 (12)0.0266 (11)0.0024 (8)0.0030 (8)0.0002 (8)
N10.0231 (8)0.0233 (10)0.0209 (9)0.0022 (7)0.0025 (7)0.0018 (7)
N20.0207 (8)0.0179 (9)0.0182 (8)0.0004 (6)0.0016 (6)0.0003 (6)
N30.0247 (9)0.0259 (11)0.0377 (10)0.0024 (7)0.0056 (7)0.0012 (8)
O10.0232 (7)0.0357 (9)0.0216 (7)0.0041 (6)0.0028 (5)0.0006 (6)
O20.0325 (8)0.0221 (8)0.0276 (7)0.0006 (6)0.0025 (6)0.0041 (6)
S10.0221 (3)0.0203 (3)0.0183 (3)0.00270 (19)0.00034 (18)0.00119 (19)
Geometric parameters (Å, º) top
C1—N11.468 (3)C8—C91.374 (3)
C1—H1A0.9800C8—S11.767 (2)
C1—H1B0.9800C9—C101.401 (3)
C1—H1C0.9800C9—H90.9500
C2—N11.457 (2)C10—C111.359 (3)
C2—H2A0.9800C10—H100.9500
C2—H2B0.9800C11—C121.424 (3)
C2—H2C0.9800C11—H110.9500
C3—C41.377 (3)C13—C141.344 (3)
C3—N11.415 (2)C13—N21.389 (3)
C3—C121.438 (3)C13—H130.9500
C4—C51.405 (3)C14—N31.390 (3)
C4—H40.9500C14—H140.9500
C5—C61.367 (3)C15—N31.299 (3)
C5—H50.9500C15—N21.380 (2)
C6—C71.422 (3)C15—H150.9500
C6—H60.9500N2—S11.6692 (16)
C7—C121.430 (3)O1—S11.4249 (14)
C7—C81.436 (3)O2—S11.4241 (14)
N1—C1—H1A109.5C10—C9—H9120.0
N1—C1—H1B109.5C11—C10—C9119.90 (17)
H1A—C1—H1B109.5C11—C10—H10120.0
N1—C1—H1C109.5C9—C10—H10120.0
H1A—C1—H1C109.5C10—C11—C12122.14 (18)
H1B—C1—H1C109.5C10—C11—H11118.9
N1—C2—H2A109.5C12—C11—H11118.9
N1—C2—H2B109.5C11—C12—C7118.84 (17)
H2A—C2—H2B109.5C11—C12—C3120.99 (17)
N1—C2—H2C109.5C7—C12—C3120.00 (16)
H2A—C2—H2C109.5C14—C13—N2105.42 (17)
H2B—C2—H2C109.5C14—C13—H13127.3
C4—C3—N1123.28 (17)N2—C13—H13127.3
C4—C3—C12118.54 (17)C13—C14—N3110.95 (19)
N1—C3—C12118.04 (16)C13—C14—H14124.5
C3—C4—C5121.01 (18)N3—C14—H14124.5
C3—C4—H4119.5N3—C15—N2111.22 (17)
C5—C4—H4119.5N3—C15—H15124.4
C6—C5—C4121.79 (18)N2—C15—H15124.4
C6—C5—H5119.1C3—N1—C2116.91 (16)
C4—C5—H5119.1C3—N1—C1116.09 (16)
C5—C6—C7119.71 (18)C2—N1—C1110.30 (16)
C5—C6—H6120.1C15—N2—C13106.73 (16)
C7—C6—H6120.1C15—N2—S1128.48 (14)
C6—C7—C12118.84 (17)C13—N2—S1124.69 (13)
C6—C7—C8124.31 (17)C15—N3—C14105.70 (17)
C12—C7—C8116.79 (16)O2—S1—O1120.60 (9)
C9—C8—C7122.21 (18)O2—S1—N2105.66 (8)
C9—C8—S1114.88 (14)O1—S1—N2106.46 (9)
C7—C8—S1122.91 (14)O2—S1—C8111.78 (9)
C8—C9—C10119.99 (17)O1—S1—C8107.60 (8)
C8—C9—H9120.0N2—S1—C8103.20 (8)
N1—C3—C4—C5178.02 (18)N2—C13—C14—N30.5 (2)
C12—C3—C4—C52.5 (3)C4—C3—N1—C215.4 (3)
C3—C4—C5—C60.5 (3)C12—C3—N1—C2160.21 (18)
C4—C5—C6—C72.3 (3)C4—C3—N1—C1117.6 (2)
C5—C6—C7—C120.9 (3)C12—C3—N1—C166.8 (2)
C5—C6—C7—C8176.03 (19)N3—C15—N2—C130.0 (2)
C6—C7—C8—C9174.8 (2)N3—C15—N2—S1176.46 (14)
C12—C7—C8—C92.2 (3)C14—C13—N2—C150.3 (2)
C6—C7—C8—S14.7 (3)C14—C13—N2—S1176.33 (14)
C12—C7—C8—S1178.26 (14)N2—C15—N3—C140.3 (2)
C7—C8—C9—C100.8 (3)C13—C14—N3—C150.5 (2)
S1—C8—C9—C10178.69 (15)C15—N2—S1—O214.58 (19)
C8—C9—C10—C112.4 (3)C13—N2—S1—O2169.57 (15)
C9—C10—C11—C120.7 (3)C15—N2—S1—O1143.94 (17)
C10—C11—C12—C72.5 (3)C13—N2—S1—O140.22 (18)
C10—C11—C12—C3177.88 (19)C15—N2—S1—C8102.91 (18)
C6—C7—C12—C11173.40 (18)C13—N2—S1—C872.93 (17)
C8—C7—C12—C113.8 (3)C9—C8—S1—O2137.71 (15)
C6—C7—C12—C32.1 (3)C7—C8—S1—O241.82 (18)
C8—C7—C12—C3179.25 (17)C9—C8—S1—O13.13 (18)
C4—C3—C12—C11171.62 (19)C7—C8—S1—O1176.40 (16)
N1—C3—C12—C114.2 (3)C9—C8—S1—N2109.19 (16)
C4—C3—C12—C73.7 (3)C7—C8—S1—N271.28 (17)
N1—C3—C12—C7179.52 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.952.423.057 (2)125
C15—H15···N3i0.952.453.395 (3)173
C14—H14···O2ii0.952.453.358 (3)161
C13—H13···N1iii0.952.573.506 (2)169
C10—H10···Cgiv0.952.823.302 (2)113
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y1, z; (iii) x, y1/2, z+1/2; (iv) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC15H15N3O2S
Mr301.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)16.3707 (16), 7.7928 (7), 22.088 (2)
V3)2817.8 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.944, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
9800, 2577, 2196
Rint0.058
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.07
No. of reflections2577
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.31

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.952.423.057 (2)124.5
C15—H15···N3i0.952.453.395 (3)173.2
C14—H14···O2ii0.952.453.358 (3)160.5
C13—H13···N1iii0.952.573.506 (2)169.2
C10—H10···Cgiv0.952.823.302 (2)113
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y1, z; (iii) x, y1/2, z+1/2; (iv) x+1/2, y1/2, z.
 

References

First citationBruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorradini, R., Dossena, A., Galaverna, G., Marchelli, R., Panagia, A. & Sarto, G. (1997). J. Org. Chem. 62, 6283–6289.  CrossRef CAS Web of Science Google Scholar
First citationHilderbrand, S. A., Lim, M. H. & Lippard, S. J. (2004). J. Am. Chem. Soc. 126, 4972–4978.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKavallieratos, K., Rosenberg, J. M., Chen, W.-Z. & Ren, T. (2005). J. Am. Chem. Soc. 127, 6514–6515.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKoike, T., Watanabe, T., Aoki, S., Kimura, E. & Shiro, M. (1996). J. Am. Chem. Soc. 118, 12696–12703.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds