metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 7a-carbonyl-2-meth­­oxy-7a,7a-bis­­(tri­phenyl­phosphino)-7a-ruthena-1-benzo­furan-4,7-di­carboxyl­ate

aDepartment of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand
*Correspondence e-mail: g.clark@auckland.ac.nz

(Received 26 November 2008; accepted 4 December 2008; online 13 December 2008)

The crystal structure of the title compound, [Ru(C12H12O6)(C18H15P)2(CO)], confirms its formulation as a ruthenabenzofuran, with a slightly distorted octa­hedral coordination environment at the RuII ion, and mutually trans triphenyl­phosphine ligands. The metallabicyclic ring system is essentially planar (maximum deviation 0.059 Å).

Related literature

For the synthesis and properties of metallabenzenes, see: Bleeke (2001[Bleeke, J. R. (2001). Chem. Rev. 101, 1205-1227.]); Landorf & Haley (2006[Landorf, C. W. & Haley, M. M. (2006). Angew. Chem. Int. Ed. 45, 3914-3936.]); Wright (2006[Wright, L. J. (2006). Dalton Trans. pp. 1821-1827.]). For the synthesis and properties of metallabenzeno­ids, see: Paneque et al. (2003[Paneque, M., Posadas, C. M., Poveda, M. L., Rendón, N., Salazar, V., Onate, E. & Mereiter, K. J. (2003). J. Am. Chem. Soc. 125, 9898-9899.]); Clark et al. (2006[Clark, G. R., Johns, P. M., Roper, W. R. & Wright, L. J. (2006). Organometallics, 25, 1771-1777.]); Yamazaki & Aoki (1976[Yamazaki, H. & Aoki, K. (1976). J. Organomet. Chem. 122, C54-C58.]); Bruce et al. (2000[Bruce, M. I., Hall, B. C., Skelton, B. W., Tiekink, E. R. T., White, A. H. & Zaitseva, N. N. (2000). Aust. J. Chem. 53, 99-107.]); Clark et al. (2008[Clark, G. R., O'Neale, T. R., Roper, W. R., Tonei, D. M. & Wright, L. J. (2008). Organometallics. In the press. ]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C12H12O6)(C18H15P)2(CO)]

  • Mr = 905.89

  • Triclinic, [P \overline 1]

  • a = 12.1102 (5) Å

  • b = 13.2229 (5) Å

  • c = 13.4273 (5) Å

  • α = 97.746 (1)°

  • β = 102.616 (1)°

  • γ = 93.333 (1)°

  • V = 2070.54 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 85 (2) K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.806, Tmax = 0.921

  • 20010 measured reflections

  • 8434 independent reflections

  • 6871 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.071

  • S = 1.04

  • 8434 reflections

  • 532 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Ru—C13 1.907 (2)
Ru—C1 2.038 (2)
Ru—C5 2.110 (2)
Ru—O6 2.2164 (16)
Ru—P1 2.3796 (6)
Ru—P2 2.3919 (6)

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metallabenzenes are now a well established class of organometallic compounds and a considerable number of studies involving the syntheses, reactivity, aromatic character and decomposition pathways of these materials have been made (Bleeke, 2001, Landorf & Haley, 2006, Wright, 2006). In contrast, studies of fused ring metallabenzenoids such as metallanaphthalenes (Paneque et al., 2003) and metallabenzofurans (Clark et al., 2006) are much more rare. We recently reported that protonation of a carbon atom in the five-membered ruthenafuran ring of the known ruthenabenzofuran, Ru[C5H2(CO2Me-2)(CO2Me-4)(CHCO2Me-5)](CO)(PPh3)2 (2) (see Fig. 2) (Yamazaki & Aoki, 1976, Bruce et al., 2000) provides a new route to ruthenabenzenes (Clark et al., 2009). While following the literature synthesis of this ruthenabenzofuran, (Yamazaki & Aoki, 1976), we were able to isolate through chromatography a small amount of a previously unreported, isomeric ruthenabenzofuran, Ru[C5H2(CO2Me-1)(CO2Me-4)(CHCO2Me-5)](CO)(PPh3)2 (1) (see Fig. 2). We now report details of the structure of (1) (Fig. 1) which confirms its formulation as a ruthenabenzofuran, with essentially octahedral coordination at Ru, and mutually trans triphenylphosphine ligands. The metallabicyclic ring system is essentially planar. The C—C bond lengths within the six-membered ring show a small but significant alternation, similar to that reported in the isomeric ruthenabenzofuran (Bruce et al., 2000) in which one of the methyl ester substituents resides on C2 rather than C1. This change has no important impact on the structural parameters of the metallabicyclic ring system. The bond length alternations in these two ruthenabenzofuran isomers are more pronounced than in the tethered ruthenabenzene derived from the isomer reported by Bruce (Bruce et al., 2000) by protonation at C6 (Clark et al., 2009).

Related literature top

For the synthesis and properties of metallabenzenes, see: Bleeke (2001); Landorf & Haley (2006); Wright (2006). For the synthesis and properties of metallabenzenoids, see: Paneque et al. (2003); Clark et al. (2006); Yamazaki & Aoki (1976); Bruce et al. (2000) Clark et al. (2009).

Experimental top

RuH2(CO)(PPh3)3 (1.00 g, 1.09 mmol) and methyl propiolate (0.55 g, 0.58 ml, 6.54 mmol) were heated under reflux in benzene (50 ml) for one hour. The initially pale yellow-green solution changed to red-brown soon after the solution reached boiling point. The solvent was removed under vacuum and the residue purified by chromatography on silica gel using dichloromethane/ethanol (98:2) as eluent. Two coloured bands were eluted from the column. The first band, which was coloured blue, was collected and on evaporation of the solvent dark blue crystals of the title compound were obtained (0.0098 g, 1%). The second, much larger red-purple band contained the related ruthenabenzofuran, Ru[C5H2(CO2Me-2)(CO2Me-4)(CHCO2Me-5)](CO)(PPh3)2 (2), previously reported in the literature (Yamazaki & Aoki, 1976). The crystal of Ru[C5H2(CO2Me-1)(CO2Me-4)(CHCO2Me-5)](CO) (PPh3)2 (1) that was used for the single-crystal X-ray diffraction study was grown from dichloromethane/ethanol solution. The atom numbering used for NMR assignments is given in Fig. 2. 1H NMR (CDCl3, δ p.p.m., TMS = 0.00), 7.10 - 7.75 (m, 30H, PPh3), 6.58 (dt, 1H, 4JHH = 8.1 Hz, 4JHP = 1.9 Hz, H2), 6.53 (d, 1H, 4JHH = 8.1 Hz, H3), 6.02 (t, 1H, 4JHP = 3.5 Hz, H6), 3.59 (s, 3H, CO2CH3, H10), 3.33 (s, 3H, CO2CH3, H12), 3.18 (s, 3H, CO2CH3, H13). 13C{1H} NMR (CDCl3, δ p.p.m., TMS = 0.00), 225.8 (2JCP = 13.6 Hz, C5), 205.3 (2JCP = 13.1 Hz, CO, C8), 194.9 (t, 2JCP = 13.1, C1), 179.4 (s, CO2Me, C7), 175.8 (s, CO2Me, C11), 168.0 (s, CO2Me, C9), 147.5 (s, CH, C3), 126–135 (m, PPh3), 129.6 (s, CH, C2), 124.4 (s, C4), 121.0 (t, CH, 3JCP = 4.5, C6), 51.9 (s, CO2CH3, C13), 51.2 (s, CO2CH3, C12), 50.5 (s, CO2CH3, C10). 31P{1H} NMR (CDCl3, δ p.p.m., 85% orthophosphoric acid external std. = 0.00), 39.27 (s).

Refinement top

Hydrogen atoms were placed in calculated positions and refined using the riding model [C—H 0.93–0.97 Å), with Uiso(H) = 1.2 or 1.5 times Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure showing 50% probability displacement ellipsoids for non-hydrogen atoms and selected hydrogen atoms as arbitary spheres (Burnett & Johnson, 1996).
[Figure 2] Fig. 2. : The reaction scheme.
Dimethyl 7a-carbonyl-2-methoxy-7a,7a-bis(triphenylphosphino)-7a-ruthena-1- benzofuran-4,7-dicarboxylate top
Crystal data top
[Ru(C12H12O6)(C18H15P)2(CO)]Z = 2
Mr = 905.89F(000) = 932
Triclinic, P1Dx = 1.453 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 12.1102 (5) ÅCell parameters from 5960 reflections
b = 13.2229 (5) Åθ = 1.6–26.4°
c = 13.4273 (5) ŵ = 0.51 mm1
α = 97.746 (1)°T = 85 K
β = 102.616 (1)°Block, purple
γ = 93.333 (1)°0.28 × 0.22 × 0.20 mm
V = 2070.54 (14) Å3
Data collection top
Siemens SMART CCD
diffractometer
8434 independent reflections
Radiation source: fine-focus sealed tube6871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Area detector ω scansθmax = 26.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1514
Tmin = 0.807, Tmax = 0.921k = 1616
20010 measured reflectionsl = 016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.022P)2 + 1.4641P]
where P = (Fo2 + 2Fc2)/3
8434 reflections(Δ/σ)max < 0.001
532 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Ru(C12H12O6)(C18H15P)2(CO)]γ = 93.333 (1)°
Mr = 905.89V = 2070.54 (14) Å3
Triclinic, P1Z = 2
a = 12.1102 (5) ÅMo Kα radiation
b = 13.2229 (5) ŵ = 0.51 mm1
c = 13.4273 (5) ÅT = 85 K
α = 97.746 (1)°0.28 × 0.22 × 0.20 mm
β = 102.616 (1)°
Data collection top
Siemens SMART CCD
diffractometer
8434 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6871 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.921Rint = 0.028
20010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
8434 reflectionsΔρmin = 0.51 e Å3
532 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru0.216450 (16)0.201239 (14)0.215449 (14)0.01165 (6)
P10.15355 (5)0.11361 (4)0.33937 (4)0.01214 (13)
P20.27620 (5)0.30884 (4)0.10386 (4)0.01183 (13)
O10.46834 (15)0.07527 (12)0.23988 (13)0.0231 (4)
O20.56152 (14)0.23144 (12)0.26121 (13)0.0197 (4)
O30.12784 (15)0.53793 (13)0.40538 (13)0.0232 (4)
O40.26131 (15)0.51234 (13)0.54176 (12)0.0210 (4)
O50.11237 (14)0.29881 (13)0.14179 (13)0.0194 (4)
O60.03690 (13)0.20657 (12)0.13497 (11)0.0143 (3)
O70.23080 (15)0.01145 (13)0.10036 (13)0.0244 (4)
C10.3802 (2)0.22584 (17)0.29898 (17)0.0136 (5)
C20.4191 (2)0.30178 (17)0.38134 (17)0.0148 (5)
H20.49560.30430.41360.018*
C30.3557 (2)0.37805 (17)0.42395 (17)0.0151 (5)
H30.39420.41910.48490.018*
C40.2460 (2)0.39826 (17)0.38648 (17)0.0133 (5)
C50.1714 (2)0.33467 (17)0.29668 (17)0.0133 (5)
C60.0607 (2)0.35233 (17)0.26249 (17)0.0150 (5)
H60.02900.40730.29310.018*
C70.0038 (2)0.28123 (18)0.17665 (17)0.0153 (5)
C80.4716 (2)0.16743 (18)0.26509 (17)0.0164 (5)
C90.6523 (2)0.1826 (2)0.2262 (2)0.0304 (7)
H9A0.71190.23370.22600.046*
H9B0.62410.14620.15760.046*
H9C0.68150.13550.27180.046*
C100.2040 (2)0.48872 (17)0.44205 (18)0.0151 (5)
C110.2193 (2)0.5936 (2)0.60212 (19)0.0273 (6)
H11A0.26490.60510.67140.041*
H11B0.14190.57460.60310.041*
H11C0.22320.65520.57200.041*
C120.1756 (2)0.2300 (2)0.05143 (19)0.0243 (6)
H12A0.25170.24920.03290.036*
H12B0.17750.16100.06650.036*
H12C0.13930.23410.00490.036*
C130.2325 (2)0.07083 (18)0.14256 (18)0.0152 (5)
C210.1726 (2)0.18875 (17)0.46847 (17)0.0139 (5)
C220.2708 (2)0.18608 (18)0.54457 (18)0.0170 (5)
H220.32640.14420.53070.020*
C230.2864 (2)0.24553 (18)0.64120 (18)0.0203 (5)
H230.35220.24280.69130.024*
C240.2055 (2)0.30838 (19)0.66338 (19)0.0233 (6)
H240.21570.34670.72860.028*
C250.1084 (2)0.31427 (18)0.58767 (19)0.0203 (5)
H250.05430.35770.60180.024*
C260.0922 (2)0.25548 (17)0.49108 (18)0.0160 (5)
H260.02730.26030.44070.019*
C310.2151 (2)0.00574 (17)0.37078 (17)0.0146 (5)
C320.3329 (2)0.00963 (19)0.38983 (19)0.0204 (5)
H320.37870.04490.37900.024*
C330.3820 (2)0.09495 (19)0.4250 (2)0.0242 (6)
H330.46050.09640.43870.029*
C340.3147 (2)0.17755 (18)0.43951 (19)0.0217 (6)
H340.34800.23340.46460.026*
C350.1978 (2)0.17655 (18)0.41653 (18)0.0203 (5)
H350.15230.23290.42390.024*
C360.1480 (2)0.09131 (18)0.38229 (17)0.0180 (5)
H360.06940.09130.36690.022*
C410.0027 (2)0.06660 (17)0.30360 (17)0.0141 (5)
C420.0622 (2)0.05808 (18)0.37681 (18)0.0168 (5)
H420.03230.08670.44530.020*
C430.1705 (2)0.00757 (18)0.34865 (19)0.0212 (5)
H430.21270.00240.39820.025*
C440.2159 (2)0.03522 (19)0.24688 (19)0.0220 (6)
H440.28840.06930.22810.026*
C450.1530 (2)0.02715 (18)0.17315 (19)0.0196 (5)
H450.18380.05550.10470.023*
C460.0442 (2)0.02310 (17)0.20093 (18)0.0165 (5)
H460.00240.02780.15110.020*
C510.38367 (19)0.26988 (18)0.03145 (17)0.0149 (5)
C520.4375 (2)0.34274 (19)0.01348 (18)0.0195 (5)
H520.42340.41120.00140.023*
C530.5115 (2)0.3138 (2)0.07585 (19)0.0231 (6)
H530.54840.36310.10350.028*
C540.5305 (2)0.2114 (2)0.09690 (18)0.0223 (6)
H540.57810.19170.14040.027*
C550.4783 (2)0.13849 (19)0.05308 (19)0.0215 (6)
H550.49150.06990.06660.026*
C560.4061 (2)0.16786 (18)0.01122 (18)0.0172 (5)
H560.37240.11860.04120.021*
C610.3378 (2)0.43490 (17)0.17463 (17)0.0132 (5)
C620.4539 (2)0.44975 (18)0.22122 (17)0.0155 (5)
H620.50090.39880.20810.019*
C630.4998 (2)0.53969 (18)0.28686 (18)0.0172 (5)
H630.57680.54820.31850.021*
C640.4307 (2)0.61687 (18)0.30531 (18)0.0185 (5)
H640.46150.67740.34880.022*
C650.3157 (2)0.60363 (17)0.25872 (18)0.0171 (5)
H650.26960.65570.27050.021*
C660.2690 (2)0.51291 (17)0.19447 (17)0.0159 (5)
H660.19150.50410.16450.019*
C710.1656 (2)0.33729 (17)0.00414 (17)0.0144 (5)
C720.1657 (2)0.43049 (19)0.04171 (18)0.0201 (5)
H720.22050.48370.00860.024*
C730.0844 (2)0.4447 (2)0.12838 (19)0.0230 (6)
H730.08410.50770.15210.028*
C740.0037 (2)0.3651 (2)0.17950 (19)0.0235 (6)
H740.05060.37450.23740.028*
C750.0044 (2)0.2714 (2)0.14401 (18)0.0214 (6)
H750.04890.21760.17870.026*
C760.0843 (2)0.25779 (18)0.05686 (17)0.0161 (5)
H760.08380.19490.03320.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.01137 (10)0.01228 (9)0.01083 (9)0.00130 (7)0.00208 (7)0.00070 (7)
P10.0119 (3)0.0124 (3)0.0115 (3)0.0009 (2)0.0017 (2)0.0017 (2)
P20.0116 (3)0.0131 (3)0.0105 (3)0.0014 (2)0.0019 (2)0.0014 (2)
O10.0226 (10)0.0171 (9)0.0299 (10)0.0043 (7)0.0076 (8)0.0006 (8)
O20.0134 (9)0.0197 (9)0.0259 (9)0.0021 (7)0.0073 (7)0.0017 (7)
O30.0259 (10)0.0210 (9)0.0206 (9)0.0107 (8)0.0012 (8)0.0010 (7)
O40.0249 (10)0.0211 (9)0.0137 (8)0.0077 (7)0.0003 (7)0.0053 (7)
O50.0104 (9)0.0228 (9)0.0218 (9)0.0017 (7)0.0012 (7)0.0004 (7)
O60.0133 (9)0.0172 (8)0.0114 (8)0.0010 (7)0.0013 (7)0.0010 (7)
O70.0305 (11)0.0170 (9)0.0240 (10)0.0009 (8)0.0078 (8)0.0037 (8)
C10.0142 (12)0.0151 (11)0.0124 (11)0.0021 (9)0.0032 (9)0.0044 (9)
C20.0105 (12)0.0202 (12)0.0134 (11)0.0021 (9)0.0002 (9)0.0052 (10)
C30.0198 (13)0.0153 (11)0.0092 (11)0.0014 (10)0.0021 (10)0.0016 (9)
C40.0151 (12)0.0125 (11)0.0129 (11)0.0007 (9)0.0037 (9)0.0036 (9)
C50.0161 (12)0.0145 (11)0.0101 (11)0.0003 (9)0.0030 (9)0.0049 (9)
C60.0151 (13)0.0154 (11)0.0146 (12)0.0015 (9)0.0046 (10)0.0009 (9)
C70.0124 (12)0.0209 (12)0.0141 (11)0.0012 (10)0.0032 (10)0.0080 (10)
C80.0132 (12)0.0208 (13)0.0131 (12)0.0021 (10)0.0011 (10)0.0016 (10)
C90.0175 (14)0.0331 (16)0.0389 (17)0.0047 (12)0.0111 (12)0.0093 (13)
C100.0153 (13)0.0137 (11)0.0154 (12)0.0027 (9)0.0038 (10)0.0004 (9)
C110.0376 (17)0.0237 (14)0.0183 (13)0.0090 (12)0.0056 (12)0.0061 (11)
C120.0133 (13)0.0323 (15)0.0220 (13)0.0004 (11)0.0031 (10)0.0014 (11)
C130.0125 (12)0.0191 (13)0.0149 (12)0.0017 (9)0.0035 (10)0.0054 (10)
C210.0181 (13)0.0125 (11)0.0119 (11)0.0016 (9)0.0054 (10)0.0029 (9)
C220.0160 (13)0.0168 (12)0.0185 (12)0.0005 (10)0.0055 (10)0.0022 (10)
C230.0206 (14)0.0226 (13)0.0142 (12)0.0068 (10)0.0008 (10)0.0029 (10)
C240.0290 (15)0.0236 (13)0.0159 (12)0.0053 (11)0.0080 (11)0.0039 (10)
C250.0236 (14)0.0169 (12)0.0220 (13)0.0009 (10)0.0116 (11)0.0006 (10)
C260.0185 (13)0.0148 (11)0.0154 (12)0.0007 (10)0.0051 (10)0.0037 (9)
C310.0171 (13)0.0146 (11)0.0117 (11)0.0020 (10)0.0031 (10)0.0003 (9)
C320.0194 (14)0.0181 (12)0.0241 (13)0.0016 (10)0.0057 (11)0.0039 (10)
C330.0198 (14)0.0255 (14)0.0275 (14)0.0077 (11)0.0039 (11)0.0048 (11)
C340.0292 (15)0.0147 (12)0.0218 (13)0.0082 (11)0.0059 (11)0.0021 (10)
C350.0266 (15)0.0144 (12)0.0191 (13)0.0009 (10)0.0051 (11)0.0004 (10)
C360.0209 (13)0.0174 (12)0.0145 (12)0.0030 (10)0.0026 (10)0.0003 (10)
C410.0136 (12)0.0134 (11)0.0150 (12)0.0007 (9)0.0014 (9)0.0039 (9)
C420.0182 (13)0.0166 (12)0.0153 (12)0.0014 (10)0.0031 (10)0.0029 (10)
C430.0195 (14)0.0215 (13)0.0237 (13)0.0014 (10)0.0067 (11)0.0059 (11)
C440.0154 (13)0.0214 (13)0.0268 (14)0.0044 (10)0.0007 (11)0.0044 (11)
C450.0191 (13)0.0181 (12)0.0176 (12)0.0015 (10)0.0015 (10)0.0001 (10)
C460.0180 (13)0.0153 (12)0.0173 (12)0.0008 (10)0.0051 (10)0.0047 (10)
C510.0105 (12)0.0217 (12)0.0110 (11)0.0019 (10)0.0003 (9)0.0007 (10)
C520.0216 (14)0.0207 (13)0.0164 (12)0.0030 (10)0.0043 (10)0.0027 (10)
C530.0222 (14)0.0321 (15)0.0175 (13)0.0020 (11)0.0077 (11)0.0076 (11)
C540.0147 (13)0.0370 (15)0.0148 (12)0.0045 (11)0.0039 (10)0.0004 (11)
C550.0192 (14)0.0225 (13)0.0202 (13)0.0048 (11)0.0022 (11)0.0029 (11)
C560.0151 (13)0.0191 (12)0.0159 (12)0.0005 (10)0.0023 (10)0.0001 (10)
C610.0138 (12)0.0144 (11)0.0114 (11)0.0015 (9)0.0029 (9)0.0029 (9)
C620.0174 (13)0.0177 (12)0.0121 (11)0.0005 (10)0.0031 (10)0.0059 (9)
C630.0171 (13)0.0190 (12)0.0149 (12)0.0034 (10)0.0027 (10)0.0036 (10)
C640.0232 (14)0.0154 (12)0.0162 (12)0.0051 (10)0.0068 (10)0.0011 (10)
C650.0197 (13)0.0141 (11)0.0187 (12)0.0010 (10)0.0077 (10)0.0012 (10)
C660.0162 (13)0.0184 (12)0.0143 (12)0.0002 (10)0.0055 (10)0.0035 (10)
C710.0156 (12)0.0170 (12)0.0103 (11)0.0029 (9)0.0030 (9)0.0006 (9)
C720.0227 (14)0.0190 (12)0.0180 (12)0.0042 (10)0.0033 (11)0.0018 (10)
C730.0275 (15)0.0219 (13)0.0201 (13)0.0106 (11)0.0024 (11)0.0064 (11)
C740.0172 (14)0.0406 (16)0.0126 (12)0.0115 (12)0.0012 (10)0.0029 (11)
C750.0166 (13)0.0313 (14)0.0141 (12)0.0006 (11)0.0032 (10)0.0027 (11)
C760.0169 (13)0.0202 (12)0.0106 (11)0.0010 (10)0.0027 (10)0.0014 (9)
Geometric parameters (Å, º) top
Ru—C131.907 (2)C31—C361.400 (3)
Ru—C12.038 (2)C32—C331.396 (3)
Ru—C52.110 (2)C32—H320.9300
Ru—O62.2164 (16)C33—C341.385 (4)
Ru—P12.3796 (6)C33—H330.9300
Ru—P22.3919 (6)C34—C351.383 (4)
P1—C411.833 (2)C34—H340.9300
P1—C211.838 (2)C35—C361.394 (3)
P1—C311.845 (2)C35—H350.9300
P2—C611.832 (2)C36—H360.9300
P2—C711.842 (2)C41—C421.397 (3)
P2—C511.844 (2)C41—C461.400 (3)
O1—C81.216 (3)C42—C431.387 (3)
O2—C81.354 (3)C42—H420.9300
O2—C91.440 (3)C43—C441.385 (3)
O3—C101.214 (3)C43—H430.9300
O4—C101.352 (3)C44—C451.385 (4)
O4—C111.442 (3)C44—H440.9300
O5—C71.341 (3)C45—C461.391 (3)
O5—C121.450 (3)C45—H450.9300
O6—C71.248 (3)C46—H460.9300
O7—C131.154 (3)C51—C561.394 (3)
C1—C21.368 (3)C51—C521.404 (3)
C1—C81.501 (3)C52—C531.391 (3)
C2—C31.435 (3)C52—H520.9300
C2—H20.9300C53—C541.389 (4)
C3—C41.370 (3)C53—H530.9300
C3—H30.9300C54—C551.385 (4)
C4—C51.463 (3)C54—H540.9300
C4—C101.497 (3)C55—C561.392 (3)
C5—C61.363 (3)C55—H550.9300
C6—C71.432 (3)C56—H560.9300
C6—H60.9300C61—C661.397 (3)
C9—H9A0.9600C61—C621.399 (3)
C9—H9B0.9600C62—C631.388 (3)
C9—H9C0.9600C62—H620.9300
C11—H11A0.9600C63—C641.387 (3)
C11—H11B0.9600C63—H630.9300
C11—H11C0.9600C64—C651.388 (3)
C12—H12A0.9600C64—H640.9300
C12—H12B0.9600C65—C661.390 (3)
C12—H12C0.9600C65—H650.9300
C21—C221.394 (3)C66—H660.9300
C21—C261.406 (3)C71—C721.393 (3)
C22—C231.392 (3)C71—C761.397 (3)
C22—H220.9300C72—C731.392 (3)
C23—C241.377 (4)C72—H720.9300
C23—H230.9300C73—C741.389 (4)
C24—C251.390 (4)C73—H730.9300
C24—H240.9300C74—C751.386 (4)
C25—C261.387 (3)C74—H740.9300
C25—H250.9300C75—C761.386 (3)
C26—H260.9300C75—H750.9300
C31—C321.398 (3)C76—H760.9300
C13—Ru—C195.87 (9)C25—C26—H26119.6
C13—Ru—C5170.35 (9)C21—C26—H26119.6
C1—Ru—C591.76 (9)C32—C31—C36118.5 (2)
C13—Ru—O694.98 (8)C32—C31—P1119.50 (18)
C1—Ru—O6168.84 (7)C36—C31—P1121.94 (18)
C5—Ru—O677.73 (7)C33—C32—C31120.3 (2)
C13—Ru—P188.00 (7)C33—C32—H32119.9
C1—Ru—P193.61 (6)C31—C32—H32119.9
C5—Ru—P185.63 (6)C34—C33—C32120.5 (2)
O6—Ru—P189.36 (4)C34—C33—H33119.7
C13—Ru—P299.24 (7)C32—C33—H33119.7
C1—Ru—P285.74 (6)C35—C34—C33119.7 (2)
C5—Ru—P287.18 (6)C35—C34—H34120.1
O6—Ru—P289.96 (4)C33—C34—H34120.1
P1—Ru—P2172.76 (2)C34—C35—C36120.2 (2)
C41—P1—C21104.31 (11)C34—C35—H35119.9
C41—P1—C3199.28 (10)C36—C35—H35119.9
C21—P1—C31101.54 (10)C35—C36—C31120.8 (2)
C41—P1—Ru114.53 (8)C35—C36—H36119.6
C21—P1—Ru115.29 (7)C31—C36—H36119.6
C31—P1—Ru119.49 (8)C42—C41—C46118.5 (2)
C61—P2—C71104.49 (10)C42—C41—P1122.52 (17)
C61—P2—C51102.69 (11)C46—C41—P1118.21 (18)
C71—P2—C5198.77 (10)C43—C42—C41120.9 (2)
C61—P2—Ru111.47 (7)C43—C42—H42119.6
C71—P2—Ru116.69 (8)C41—C42—H42119.6
C51—P2—Ru120.55 (8)C44—C43—C42120.1 (2)
C8—O2—C9115.36 (19)C44—C43—H43120.0
C10—O4—C11115.26 (19)C42—C43—H43120.0
C7—O5—C12116.16 (18)C43—C44—C45119.9 (2)
C7—O6—Ru110.09 (14)C43—C44—H44120.1
C2—C1—C8114.3 (2)C45—C44—H44120.1
C2—C1—Ru124.54 (17)C44—C45—C46120.3 (2)
C8—C1—Ru120.77 (16)C44—C45—H45119.8
C1—C2—C3127.7 (2)C46—C45—H45119.8
C1—C2—H2116.1C45—C46—C41120.3 (2)
C3—C2—H2116.1C45—C46—H46119.8
C4—C3—C2128.4 (2)C41—C46—H46119.8
C4—C3—H3115.8C56—C51—C52118.1 (2)
C2—C3—H3115.8C56—C51—P2122.01 (18)
C3—C4—C5122.2 (2)C52—C51—P2119.59 (18)
C3—C4—C10117.1 (2)C53—C52—C51120.8 (2)
C5—C4—C10120.7 (2)C53—C52—H52119.6
C6—C5—C4122.0 (2)C51—C52—H52119.6
C6—C5—Ru113.07 (16)C54—C53—C52120.0 (2)
C4—C5—Ru124.71 (16)C54—C53—H53120.0
C5—C6—C7116.0 (2)C52—C53—H53120.0
C5—C6—H6122.0C55—C54—C53119.9 (2)
C7—C6—H6122.0C55—C54—H54120.0
O6—C7—O5120.6 (2)C53—C54—H54120.0
O6—C7—C6123.1 (2)C54—C55—C56120.0 (2)
O5—C7—C6116.3 (2)C54—C55—H55120.0
O1—C8—O2121.8 (2)C56—C55—H55120.0
O1—C8—C1126.9 (2)C55—C56—C51121.1 (2)
O2—C8—C1111.25 (19)C55—C56—H56119.4
O2—C9—H9A109.5C51—C56—H56119.4
O2—C9—H9B109.5C66—C61—C62118.7 (2)
H9A—C9—H9B109.5C66—C61—P2121.15 (18)
O2—C9—H9C109.5C62—C61—P2119.62 (18)
H9A—C9—H9C109.5C63—C62—C61120.7 (2)
H9B—C9—H9C109.5C63—C62—H62119.6
O3—C10—O4121.5 (2)C61—C62—H62119.6
O3—C10—C4126.2 (2)C64—C63—C62120.0 (2)
O4—C10—C4112.3 (2)C64—C63—H63120.0
O4—C11—H11A109.5C62—C63—H63120.0
O4—C11—H11B109.5C63—C64—C65119.9 (2)
H11A—C11—H11B109.5C63—C64—H64120.1
O4—C11—H11C109.5C65—C64—H64120.1
H11A—C11—H11C109.5C64—C65—C66120.3 (2)
H11B—C11—H11C109.5C64—C65—H65119.8
O5—C12—H12A109.5C66—C65—H65119.8
O5—C12—H12B109.5C65—C66—C61120.4 (2)
H12A—C12—H12B109.5C65—C66—H66119.8
O5—C12—H12C109.5C61—C66—H66119.8
H12A—C12—H12C109.5C72—C71—C76118.6 (2)
H12B—C12—H12C109.5C72—C71—P2123.32 (18)
O7—C13—Ru172.5 (2)C76—C71—P2117.82 (17)
C22—C21—C26118.1 (2)C73—C72—C71120.6 (2)
C22—C21—P1120.81 (18)C73—C72—H72119.7
C26—C21—P1120.95 (17)C71—C72—H72119.7
C23—C22—C21120.6 (2)C74—C73—C72120.1 (2)
C23—C22—H22119.7C74—C73—H73120.0
C21—C22—H22119.7C72—C73—H73120.0
C24—C23—C22120.7 (2)C75—C74—C73119.8 (2)
C24—C23—H23119.6C75—C74—H74120.1
C22—C23—H23119.6C73—C74—H74120.1
C23—C24—C25119.6 (2)C74—C75—C76120.0 (2)
C23—C24—H24120.2C74—C75—H75120.0
C25—C24—H24120.2C76—C75—H75120.0
C26—C25—C24120.1 (2)C75—C76—C71120.9 (2)
C26—C25—H25119.9C75—C76—H76119.5
C24—C25—H25119.9C71—C76—H76119.5
C25—C26—C21120.8 (2)

Experimental details

Crystal data
Chemical formula[Ru(C12H12O6)(C18H15P)2(CO)]
Mr905.89
Crystal system, space groupTriclinic, P1
Temperature (K)85
a, b, c (Å)12.1102 (5), 13.2229 (5), 13.4273 (5)
α, β, γ (°)97.746 (1), 102.616 (1), 93.333 (1)
V3)2070.54 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.807, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
20010, 8434, 6871
Rint0.028
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.071, 1.04
No. of reflections8434
No. of parameters532
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.51

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ru—C131.907 (2)Ru—O62.2164 (16)
Ru—C12.038 (2)Ru—P12.3796 (6)
Ru—C52.110 (2)Ru—P22.3919 (6)
 

References

First citationBleeke, J. R. (2001). Chem. Rev. 101, 1205–1227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruce, M. I., Hall, B. C., Skelton, B. W., Tiekink, E. R. T., White, A. H. & Zaitseva, N. N. (2000). Aust. J. Chem. 53, 99–107.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationClark, G. R., Johns, P. M., Roper, W. R. & Wright, L. J. (2006). Organometallics, 25, 1771–1777.  Web of Science CrossRef CAS Google Scholar
First citationClark, G. R., O'Neale, T. R., Roper, W. R., Tonei, D. M. & Wright, L. J. (2008). Organometallics. In the press.  Google Scholar
First citationLandorf, C. W. & Haley, M. M. (2006). Angew. Chem. Int. Ed. 45, 3914–3936.  Web of Science CrossRef CAS Google Scholar
First citationPaneque, M., Posadas, C. M., Poveda, M. L., Rendón, N., Salazar, V., Onate, E. & Mereiter, K. J. (2003). J. Am. Chem. Soc. 125, 9898–9899.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWright, L. J. (2006). Dalton Trans. pp. 1821–1827.  Web of Science CrossRef Google Scholar
First citationYamazaki, H. & Aoki, K. (1976). J. Organomet. Chem. 122, C54–C58.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds