metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chloridobis(2,9-dieth­­oxy-1,10-phenanthroline-κ2N,N′)copper(II) perchlorate

aCollege of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: niu_cy2000@yahoo.com.cn

(Received 26 November 2008; accepted 7 December 2008; online 13 December 2008)

In the title complex, [CuCl(C16H16N2O2)2]ClO4, the CuII ion is coordinated by four N atoms from two chelating 2,9-dieth­oxy-1,10-phenanthroline ligands and one chloride ion in a slightly disorted trigonal-bipyramidal environment. Two N atoms and the Cl atom are in equatorial positions while the remaining two N atoms occupy apical sites, the equatorial Cu—N bonds being significantly longer than the two apical Cu—N bonds. The N=C—O—C torsion angles involving the four eth­oxy groups are in the range 161.5 (8) to 177.0 (5)°. In the crystal structure, there are significant ππ stacking inter­actions between inversion-related rings of phenanthroline groups with centroid–centroid distances in the range 3.649 (4)–3.790 (4) Å.

Related literature

For background information, see: Pijper et al. (1984[Pijper, P. L., Van der, G. H., Timmerman, H. & Nauta, W. T. (1984). Eur. J. Med. Chem. 19, 399-404.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C16H16N2O2)2]ClO4

  • Mr = 735.06

  • Monoclinic, P 21 /c

  • a = 9.7461 (13) Å

  • b = 23.953 (3) Å

  • c = 13.9777 (18) Å

  • β = 91.837 (2)°

  • V = 3261.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 291 (2) K

  • 0.34 × 0.27 × 0.17 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.750, Tmax = 0.863

  • 16840 measured reflections

  • 6045 independent reflections

  • 3209 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.216

  • S = 1.05

  • 6045 reflections

  • 428 parameters

  • 100 restraints

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 1.999 (5)
Cu1—N4 2.003 (5)
Cu1—N2 2.158 (5)
Cu1—N3 2.162 (5)
Cu1—Cl1 2.2847 (19)
N1—Cu1—N4 176.8 (2)
N1—Cu1—N2 80.38 (19)
N4—Cu1—N2 102.79 (19)
N1—Cu1—N3 100.03 (19)
N4—Cu1—N3 79.6 (2)
N2—Cu1—N3 101.22 (17)
N1—Cu1—Cl1 91.64 (15)
N4—Cu1—Cl1 86.22 (15)
N2—Cu1—Cl1 130.20 (13)
N3—Cu1—Cl1 128.54 (15)

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR. Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The synthesis of 2,9-Dimethoxy-1,10-phenanthroline and 2,9-diethoxy-1,10-phenanthroline have already been reported in the literature and have been shown to possess antimycoplasmal activity in the presence of copper (Pijper, et al., 1984). However, no crystal structures of their copper complexes have so far been reported. Herein we report the crystal structure of a mononuclear copper complex with 2,9-diethoxy-1,10-phenanthroline.

In the title compound, the CuII ion is coordinated by four nitrogen atoms from two phenanthroline rings (N1, N2, N3, N4) and one chloride ion (Cl1) forming a slightly distorted trigonal-bipyramidal geometry (Fig.1). Atoms N2, N3, and Cl1 are located in the equatorial positions and atoms N1 and N4 in the apical sites. The Cu1—N2 and Cu1—N3 bonds are significantly longer than the other two Cu—N bonds. The N=C—O—C torsion angles involving the four ethoxy groups are in the range 161.5 (8) to 177.0 (5)°. In the crystal structure, significant π···π stacking interactions between pairs of inversion related parallel rings of the phenanthroline groups give centroid-to-centroid distances in the range 3.649 (4)-3.790 (4) Å (Fig. 2). One perchlorate anion acts as the counteranion balancing the charge on the mononuclear complex.

Related literature top

For background information, see: Pijper et al. (1984).

Experimental top

2,9-diethoxy-1,10-phenanthroline was prepared according to the literature procedure (Pijper, et al., 1984). The slow evaporation of a mixture of the ligand (0.024 g, 0.1 mmol), CuCl2 (0.016 g, 0.1 mmol), and NaClO4.6H2O (0.037 g, 0.1 mmol) in 30 ml methanol afforded green block single crystals in about 15 days (yield about 70%).

Refinement top

The H atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms; C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms; C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms]. The C atoms of the ethoxy groups have larger displacement parameters than normal. This may be due to mimimal disorder which was not modelled. However, the C—C bond distances in the four methylene groups were constrained to 1.53 (1) Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: 'PLATON (Spek, 2003) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are not shown.
[Figure 2] Fig. 2. Part of the crystal structure showing intermolecular π···π stacking indicated by dashed lines. All H atoms and perchlorate anions have been omitted for clarity.
Chloridobis(2,9-diethoxy-1,10-phenanthroline-κ2N,N')copper(II) perchlorate top
Crystal data top
[CuCl(C16H16N2O2)2]ClO4F(000) = 1516
Mr = 735.06Dx = 1.497 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2218 reflections
a = 9.7461 (13) Åθ = 2.7–25.5°
b = 23.953 (3) ŵ = 0.89 mm1
c = 13.9777 (18) ÅT = 291 K
β = 91.837 (2)°Block, green
V = 3261.4 (7) Å30.34 × 0.27 × 0.17 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
6045 independent reflections
Radiation source: fine-focus sealed tube3209 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.750, Tmax = 0.863k = 2829
16840 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1064P)2 + 1.0151P]
where P = (Fo2 + 2Fc2)/3
6045 reflections(Δ/σ)max < 0.001
428 parametersΔρmax = 0.67 e Å3
100 restraintsΔρmin = 0.43 e Å3
Crystal data top
[CuCl(C16H16N2O2)2]ClO4V = 3261.4 (7) Å3
Mr = 735.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7461 (13) ŵ = 0.89 mm1
b = 23.953 (3) ÅT = 291 K
c = 13.9777 (18) Å0.34 × 0.27 × 0.17 mm
β = 91.837 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
6045 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3209 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.863Rint = 0.055
16840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065100 restraints
wR(F2) = 0.216H-atom parameters constrained
S = 1.05Δρmax = 0.67 e Å3
6045 reflectionsΔρmin = 0.43 e Å3
428 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.26542 (7)0.47318 (3)0.74564 (5)0.0571 (3)
Cl10.07239 (19)0.47574 (9)0.64858 (15)0.0997 (7)
Cl20.26726 (19)0.73954 (7)0.91201 (14)0.0747 (5)
O10.1727 (6)0.59575 (19)0.7034 (4)0.0889 (15)
O20.4526 (4)0.35968 (16)0.8018 (3)0.0669 (11)
O30.4465 (5)0.56765 (18)0.8725 (3)0.0732 (13)
O40.1747 (5)0.3525 (2)0.6905 (4)0.0844 (14)
O50.4055 (5)0.7571 (2)0.9173 (4)0.1113 (18)
O60.1856 (8)0.7690 (3)0.9745 (6)0.150 (3)
O70.2544 (6)0.6820 (2)0.9289 (5)0.132 (2)
O80.2123 (7)0.7500 (3)0.8194 (5)0.136 (2)
N10.3467 (5)0.53815 (19)0.6778 (3)0.0568 (13)
N20.4665 (5)0.43982 (19)0.7198 (3)0.0499 (11)
N30.2912 (5)0.5010 (2)0.8922 (3)0.0568 (12)
N40.1743 (5)0.4105 (2)0.8140 (4)0.0594 (13)
C10.2907 (7)0.5872 (3)0.6577 (5)0.0703 (18)
C20.3467 (9)0.6270 (3)0.5968 (5)0.080 (2)
H20.30150.66040.58320.096*
C30.4689 (8)0.6151 (3)0.5585 (5)0.077 (2)
H30.50720.64090.51750.092*
C40.5403 (7)0.5652 (3)0.5781 (4)0.0682 (18)
C50.6692 (7)0.5514 (3)0.5426 (5)0.0719 (18)
H50.71210.57580.50130.086*
C60.7305 (7)0.5035 (3)0.5679 (5)0.0755 (19)
H60.81710.49590.54510.091*
C70.6676 (6)0.4634 (3)0.6290 (4)0.0591 (16)
C80.7256 (6)0.4127 (3)0.6569 (5)0.0645 (17)
H80.81230.40320.63600.077*
C90.6588 (7)0.3770 (3)0.7134 (5)0.0641 (17)
H90.69840.34320.73190.077*
C100.5271 (6)0.3923 (2)0.7438 (4)0.0558 (15)
C110.5375 (6)0.4756 (2)0.6638 (4)0.0502 (14)
C120.4721 (6)0.5278 (2)0.6399 (4)0.0559 (15)
C130.3622 (7)0.5429 (3)0.9315 (5)0.0649 (17)
C140.3474 (8)0.5577 (3)1.0286 (5)0.081 (2)
H140.39940.58661.05550.098*
C150.2577 (9)0.5296 (3)1.0820 (5)0.085 (2)
H150.24720.54001.14550.102*
C160.1785 (8)0.4845 (3)1.0434 (5)0.0703 (19)
C170.0836 (9)0.4528 (4)1.0953 (5)0.085 (2)
H170.06570.46231.15820.102*
C180.0187 (8)0.4085 (3)1.0533 (5)0.084 (2)
H180.04550.38871.08760.101*
C190.0465 (7)0.3918 (3)0.9581 (5)0.0691 (18)
C200.0109 (7)0.3445 (3)0.9093 (6)0.081 (2)
H200.07480.32250.94000.097*
C210.0243 (7)0.3310 (3)0.8216 (6)0.079 (2)
H210.01510.30030.79080.095*
C220.1240 (7)0.3645 (3)0.7745 (5)0.0692 (18)
C230.1387 (6)0.4240 (2)0.9053 (4)0.0586 (15)
C240.2031 (6)0.4713 (2)0.9485 (4)0.0558 (15)
C250.0873 (13)0.6395 (5)0.6618 (10)0.165 (4)
H25A0.13070.67510.67560.198*
H25B0.08380.63480.59280.198*
C260.0473 (14)0.6412 (6)0.6939 (11)0.204 (6)
H26A0.10040.61210.66330.306*
H26B0.08750.67680.67830.306*
H26C0.04630.63590.76190.306*
C270.5010 (8)0.3041 (3)0.8233 (5)0.081 (2)
H27A0.58600.30550.86130.097*
H27B0.51720.28380.76480.097*
C280.3898 (8)0.2763 (3)0.8787 (6)0.102 (3)
H28A0.36610.29960.93160.153*
H28B0.42230.24090.90230.153*
H28C0.31030.27070.83750.153*
C290.5355 (7)0.6122 (3)0.9063 (5)0.084 (2)
H29A0.59970.59840.95530.101*
H29B0.48180.64200.93370.101*
C300.6118 (8)0.6336 (3)0.8219 (6)0.105 (3)
H30A0.66650.60410.79650.158*
H30B0.67040.66390.84190.158*
H30C0.54730.64640.77340.158*
C310.1123 (10)0.3080 (4)0.6354 (7)0.129 (3)
H31A0.08580.27810.67780.155*
H31B0.03030.32170.60200.155*
C320.2069 (11)0.2869 (5)0.5671 (8)0.159 (4)
H32A0.19570.30730.50820.238*
H32B0.18870.24810.55550.238*
H32C0.29920.29140.59190.238*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0593 (5)0.0552 (5)0.0568 (5)0.0024 (4)0.0015 (4)0.0043 (3)
Cl10.0666 (11)0.1277 (18)0.1029 (15)0.0222 (11)0.0256 (10)0.0300 (12)
Cl20.0762 (12)0.0558 (10)0.0921 (13)0.0037 (8)0.0009 (10)0.0131 (9)
O10.094 (4)0.070 (3)0.103 (4)0.026 (3)0.001 (3)0.008 (3)
O20.076 (3)0.048 (2)0.077 (3)0.004 (2)0.000 (2)0.003 (2)
O30.084 (3)0.058 (3)0.076 (3)0.012 (2)0.013 (3)0.015 (2)
O40.073 (3)0.087 (3)0.095 (4)0.027 (3)0.014 (3)0.039 (3)
O50.076 (3)0.120 (4)0.137 (4)0.012 (3)0.012 (3)0.026 (3)
O60.133 (5)0.141 (5)0.179 (6)0.010 (4)0.025 (4)0.063 (5)
O70.122 (4)0.073 (3)0.201 (6)0.006 (3)0.039 (4)0.038 (4)
O80.148 (5)0.130 (5)0.126 (5)0.034 (4)0.043 (4)0.018 (4)
N10.058 (3)0.055 (3)0.057 (3)0.005 (2)0.010 (3)0.006 (2)
N20.055 (3)0.047 (3)0.047 (3)0.004 (2)0.006 (2)0.005 (2)
N30.064 (3)0.048 (3)0.058 (3)0.009 (3)0.010 (3)0.008 (2)
N40.056 (3)0.059 (3)0.063 (3)0.003 (2)0.001 (2)0.010 (3)
C10.068 (5)0.068 (5)0.073 (5)0.006 (4)0.014 (4)0.006 (4)
C20.090 (6)0.060 (4)0.088 (5)0.000 (4)0.020 (4)0.015 (4)
C30.096 (6)0.054 (4)0.078 (5)0.018 (4)0.023 (4)0.017 (3)
C40.078 (5)0.067 (4)0.059 (4)0.023 (4)0.021 (4)0.002 (3)
C50.062 (4)0.081 (5)0.073 (5)0.021 (4)0.004 (4)0.010 (4)
C60.050 (4)0.106 (6)0.070 (5)0.017 (4)0.000 (3)0.003 (4)
C70.052 (4)0.076 (4)0.048 (3)0.011 (3)0.009 (3)0.012 (3)
C80.052 (4)0.075 (5)0.066 (4)0.009 (3)0.001 (3)0.021 (4)
C90.062 (4)0.063 (4)0.068 (4)0.009 (3)0.005 (3)0.009 (3)
C100.067 (4)0.048 (4)0.051 (4)0.000 (3)0.007 (3)0.010 (3)
C110.052 (3)0.055 (3)0.043 (3)0.001 (3)0.011 (3)0.005 (3)
C120.061 (4)0.054 (4)0.051 (3)0.014 (3)0.015 (3)0.000 (3)
C130.073 (4)0.056 (4)0.064 (4)0.014 (3)0.018 (4)0.010 (3)
C140.112 (6)0.063 (5)0.066 (5)0.005 (4)0.028 (4)0.015 (4)
C150.129 (7)0.080 (5)0.046 (4)0.028 (5)0.010 (4)0.009 (4)
C160.093 (5)0.068 (4)0.049 (4)0.025 (4)0.009 (4)0.001 (3)
C170.104 (6)0.099 (6)0.051 (4)0.022 (5)0.009 (4)0.009 (4)
C180.087 (6)0.097 (6)0.071 (5)0.022 (5)0.015 (4)0.024 (4)
C190.062 (4)0.077 (5)0.068 (5)0.012 (4)0.007 (3)0.015 (4)
C200.063 (4)0.078 (5)0.102 (6)0.012 (4)0.012 (4)0.015 (4)
C210.067 (5)0.080 (5)0.091 (6)0.020 (4)0.009 (4)0.008 (4)
C220.063 (4)0.070 (4)0.075 (5)0.009 (3)0.005 (4)0.018 (4)
C230.066 (4)0.059 (4)0.050 (4)0.005 (3)0.001 (3)0.001 (3)
C240.069 (4)0.047 (3)0.051 (4)0.011 (3)0.003 (3)0.001 (3)
C250.155 (8)0.153 (8)0.189 (8)0.054 (7)0.043 (7)0.040 (7)
C260.191 (9)0.211 (10)0.209 (9)0.024 (8)0.015 (8)0.039 (8)
C270.100 (5)0.060 (4)0.084 (5)0.007 (4)0.000 (4)0.004 (3)
C280.117 (6)0.076 (5)0.113 (6)0.001 (4)0.004 (5)0.024 (4)
C290.082 (5)0.066 (4)0.103 (5)0.006 (4)0.033 (4)0.020 (4)
C300.098 (5)0.097 (5)0.120 (6)0.035 (5)0.007 (5)0.008 (5)
C310.117 (6)0.147 (7)0.124 (6)0.049 (6)0.009 (5)0.066 (6)
C320.178 (8)0.152 (7)0.145 (7)0.004 (7)0.006 (7)0.066 (6)
Geometric parameters (Å, º) top
Cu1—N11.999 (5)C13—C141.414 (9)
Cu1—N42.003 (5)C14—C151.347 (10)
Cu1—N22.158 (5)C14—H140.9300
Cu1—N32.162 (5)C15—C161.425 (10)
Cu1—Cl12.2847 (19)C15—H150.9300
Cl2—O61.392 (6)C16—C241.392 (9)
Cl2—O71.404 (5)C16—C171.413 (10)
Cl2—O81.408 (6)C17—C181.359 (10)
Cl2—O51.411 (5)C17—H170.9300
O1—C11.349 (8)C18—C191.424 (9)
O1—C251.447 (11)C18—H180.9300
O2—C101.353 (7)C19—C231.411 (9)
O2—C271.441 (7)C19—C201.427 (10)
O3—C131.324 (8)C20—C211.324 (9)
O3—C291.446 (7)C20—H200.9300
O4—C221.320 (7)C21—C221.434 (9)
O4—C311.438 (8)C21—H210.9300
N1—C11.322 (8)C23—C241.420 (8)
N1—C121.370 (8)C25—C261.401 (9)
N2—C101.321 (7)C25—H25A0.9700
N2—C111.363 (7)C25—H25B0.9700
N3—C131.328 (8)C26—H26A0.9600
N3—C241.380 (7)C26—H26B0.9600
N4—C221.320 (7)C26—H26C0.9600
N4—C231.371 (7)C27—C281.508 (7)
C1—C21.400 (9)C27—H27A0.9700
C2—C31.352 (10)C27—H27B0.9700
C2—H20.9300C28—H28A0.9600
C3—C41.406 (9)C28—H28B0.9600
C3—H30.9300C28—H28C0.9600
C4—C51.405 (9)C29—C301.505 (8)
C4—C121.422 (8)C29—H29A0.9700
C5—C61.336 (10)C29—H29B0.9700
C5—H50.9300C30—H30A0.9600
C6—C71.436 (9)C30—H30B0.9600
C6—H60.9300C30—H30C0.9600
C7—C81.390 (8)C31—C321.439 (8)
C7—C111.403 (8)C31—H31A0.9700
C8—C91.345 (9)C31—H31B0.9700
C8—H80.9300C32—H32A0.9600
C9—C101.414 (8)C32—H32B0.9600
C9—H90.9300C32—H32C0.9600
C11—C121.439 (8)
N1—Cu1—N4176.8 (2)C16—C15—H15119.2
N1—Cu1—N280.38 (19)C24—C16—C17120.2 (7)
N4—Cu1—N2102.79 (19)C24—C16—C15115.2 (7)
N1—Cu1—N3100.03 (19)C17—C16—C15124.6 (7)
N4—Cu1—N379.6 (2)C18—C17—C16120.0 (7)
N2—Cu1—N3101.22 (17)C18—C17—H17120.0
N1—Cu1—Cl191.64 (15)C16—C17—H17120.0
N4—Cu1—Cl186.22 (15)C17—C18—C19121.6 (7)
N2—Cu1—Cl1130.20 (13)C17—C18—H18119.2
N3—Cu1—Cl1128.54 (15)C19—C18—H18119.2
O6—Cl2—O7109.7 (4)C23—C19—C18118.5 (7)
O6—Cl2—O8106.2 (5)C23—C19—C20115.5 (6)
O7—Cl2—O8107.2 (4)C18—C19—C20125.9 (7)
O6—Cl2—O5112.4 (4)C21—C20—C19121.8 (7)
O7—Cl2—O5111.9 (4)C21—C20—H20119.1
O8—Cl2—O5109.3 (4)C19—C20—H20119.1
C1—O1—C25114.1 (7)C20—C21—C22119.2 (7)
C10—O2—C27118.6 (5)C20—C21—H21120.4
C13—O3—C29120.3 (5)C22—C21—H21120.4
C22—O4—C31118.3 (6)O4—C22—N4114.1 (6)
C1—N1—C12116.5 (6)O4—C22—C21124.4 (6)
C1—N1—Cu1128.7 (5)N4—C22—C21121.5 (7)
C12—N1—Cu1114.5 (4)N4—C23—C19122.8 (6)
C10—N2—C11117.2 (5)N4—C23—C24117.5 (6)
C10—N2—Cu1132.6 (4)C19—C23—C24119.6 (6)
C11—N2—Cu1110.1 (4)N3—C24—C16123.7 (6)
C13—N3—C24118.7 (5)N3—C24—C23116.3 (5)
C13—N3—Cu1131.9 (5)C16—C24—C23119.9 (6)
C24—N3—Cu1109.0 (4)C26—C25—O1115.2 (11)
C22—N4—C23119.0 (6)C26—C25—H25A108.5
C22—N4—Cu1126.2 (5)O1—C25—H25A108.5
C23—N4—Cu1113.3 (4)C26—C25—H25B108.5
N1—C1—O1112.8 (6)O1—C25—H25B108.5
N1—C1—C2124.6 (7)H25A—C25—H25B107.5
O1—C1—C2122.7 (7)C25—C26—H26A109.5
C3—C2—C1117.6 (7)C25—C26—H26B109.5
C3—C2—H2121.2H26A—C26—H26B109.5
C1—C2—H2121.2C25—C26—H26C109.5
C2—C3—C4122.6 (7)H26A—C26—H26C109.5
C2—C3—H3118.7H26B—C26—H26C109.5
C4—C3—H3118.7O2—C27—C28106.2 (6)
C5—C4—C3125.0 (7)O2—C27—H27A110.5
C5—C4—C12120.5 (6)C28—C27—H27A110.5
C3—C4—C12114.5 (7)O2—C27—H27B110.5
C6—C5—C4120.4 (7)C28—C27—H27B110.5
C6—C5—H5119.8H27A—C27—H27B108.7
C4—C5—H5119.8C27—C28—H28A109.5
C5—C6—C7122.4 (7)C27—C28—H28B109.5
C5—C6—H6118.8H28A—C28—H28B109.5
C7—C6—H6118.8C27—C28—H28C109.5
C8—C7—C11116.7 (6)H28A—C28—H28C109.5
C8—C7—C6125.0 (6)H28B—C28—H28C109.5
C11—C7—C6118.4 (6)O3—C29—C30107.5 (6)
C9—C8—C7121.3 (6)O3—C29—H29A110.2
C9—C8—H8119.4C30—C29—H29A110.2
C7—C8—H8119.4O3—C29—H29B110.2
C8—C9—C10118.3 (6)C30—C29—H29B110.2
C8—C9—H9120.9H29A—C29—H29B108.5
C10—C9—H9120.9C29—C30—H30A109.5
N2—C10—O2113.9 (5)C29—C30—H30B109.5
N2—C10—C9123.3 (6)H30A—C30—H30B109.5
O2—C10—C9122.8 (6)C29—C30—H30C109.5
N2—C11—C7123.3 (5)H30A—C30—H30C109.5
N2—C11—C12116.8 (5)H30B—C30—H30C109.5
C7—C11—C12119.9 (6)C32—C31—O4110.3 (7)
N1—C12—C4124.2 (6)C32—C31—H31A109.6
N1—C12—C11117.4 (5)O4—C31—H31A109.6
C4—C12—C11118.4 (6)C32—C31—H31B109.6
O3—C13—N3114.0 (6)O4—C31—H31B109.6
O3—C13—C14124.8 (6)H31A—C31—H31B108.1
N3—C13—C14121.2 (7)C31—C32—H32A109.5
C15—C14—C13119.6 (7)C31—C32—H32B109.5
C15—C14—H14120.2H32A—C32—H32B109.5
C13—C14—H14120.2C31—C32—H32C109.5
C14—C15—C16121.5 (7)H32A—C32—H32C109.5
C14—C15—H15119.2H32B—C32—H32C109.5
N2—Cu1—N1—C1178.8 (5)C1—N1—C12—C42.9 (8)
N3—Cu1—N1—C179.0 (5)Cu1—N1—C12—C4171.3 (4)
Cl1—Cu1—N1—C150.7 (5)C1—N1—C12—C11177.7 (5)
N2—Cu1—N1—C127.8 (4)Cu1—N1—C12—C118.1 (6)
N3—Cu1—N1—C12107.7 (4)C5—C4—C12—N1179.8 (5)
Cl1—Cu1—N1—C12122.7 (4)C3—C4—C12—N10.4 (8)
N1—Cu1—N2—C10176.9 (5)C5—C4—C12—C110.8 (8)
N4—Cu1—N2—C103.3 (5)C3—C4—C12—C11179.9 (5)
N3—Cu1—N2—C1078.4 (5)N2—C11—C12—N12.2 (7)
Cl1—Cu1—N2—C1099.2 (5)C7—C11—C12—N1178.4 (5)
N1—Cu1—N2—C116.5 (3)N2—C11—C12—C4177.2 (5)
N4—Cu1—N2—C11173.4 (3)C7—C11—C12—C42.1 (7)
N3—Cu1—N2—C11104.9 (3)C29—O3—C13—N3177.0 (5)
Cl1—Cu1—N2—C1177.5 (4)C29—O3—C13—C142.0 (9)
N1—Cu1—N3—C1311.7 (5)C24—N3—C13—O3178.2 (5)
N4—Cu1—N3—C13171.5 (5)Cu1—N3—C13—O310.2 (8)
N2—Cu1—N3—C1370.4 (5)C24—N3—C13—C140.8 (8)
Cl1—Cu1—N3—C13111.9 (5)Cu1—N3—C13—C14170.8 (4)
N1—Cu1—N3—C24160.6 (4)O3—C13—C14—C15179.7 (6)
N4—Cu1—N3—C2416.2 (4)N3—C13—C14—C151.4 (10)
N2—Cu1—N3—C24117.4 (4)C13—C14—C15—C161.2 (11)
Cl1—Cu1—N3—C2460.3 (4)C14—C15—C16—C241.2 (10)
N2—Cu1—N4—C2276.5 (5)C14—C15—C16—C17179.3 (7)
N3—Cu1—N4—C22175.8 (5)C24—C16—C17—C181.6 (10)
Cl1—Cu1—N4—C2253.9 (5)C15—C16—C17—C18176.4 (7)
N2—Cu1—N4—C23117.5 (4)C16—C17—C18—C191.9 (11)
N3—Cu1—N4—C2318.2 (4)C17—C18—C19—C233.2 (10)
Cl1—Cu1—N4—C23112.1 (4)C17—C18—C19—C20176.8 (7)
C12—N1—C1—O1175.3 (5)C23—C19—C20—C212.2 (10)
Cu1—N1—C1—O111.5 (8)C18—C19—C20—C21177.8 (7)
C12—N1—C1—C23.9 (9)C19—C20—C21—C220.7 (11)
Cu1—N1—C1—C2169.4 (5)C31—O4—C22—N4171.0 (7)
C25—O1—C1—N1161.5 (8)C31—O4—C22—C219.8 (11)
C25—O1—C1—C219.3 (11)C23—N4—C22—O4173.8 (5)
N1—C1—C2—C32.3 (10)Cu1—N4—C22—O421.0 (8)
O1—C1—C2—C3176.8 (6)C23—N4—C22—C215.4 (9)
C1—C2—C3—C40.5 (10)Cu1—N4—C22—C21159.8 (5)
C2—C3—C4—C5178.0 (7)C20—C21—C22—O4174.4 (7)
C2—C3—C4—C121.3 (9)C20—C21—C22—N44.8 (11)
C3—C4—C5—C6178.0 (6)C22—N4—C23—C192.3 (9)
C12—C4—C5—C61.3 (9)Cu1—N4—C23—C19164.8 (5)
C4—C5—C6—C72.0 (10)C22—N4—C23—C24175.1 (5)
C5—C6—C7—C8179.2 (6)Cu1—N4—C23—C2417.8 (6)
C5—C6—C7—C110.6 (9)C18—C19—C23—N4178.5 (6)
C11—C7—C8—C90.8 (8)C20—C19—C23—N41.5 (9)
C6—C7—C8—C9179.1 (6)C18—C19—C23—C241.2 (9)
C7—C8—C9—C100.2 (9)C20—C19—C23—C24178.8 (6)
C11—N2—C10—O2178.0 (4)C13—N3—C24—C163.5 (8)
Cu1—N2—C10—O25.6 (7)Cu1—N3—C24—C16170.0 (5)
C11—N2—C10—C90.9 (8)C13—N3—C24—C23174.7 (5)
Cu1—N2—C10—C9175.5 (4)Cu1—N3—C24—C2311.8 (6)
C27—O2—C10—N2172.7 (5)C17—C16—C24—N3178.2 (6)
C27—O2—C10—C98.4 (8)C15—C16—C24—N33.6 (9)
C8—C9—C10—N20.2 (9)C17—C16—C24—C233.7 (9)
C8—C9—C10—O2179.0 (5)C15—C16—C24—C23174.5 (6)
C10—N2—C11—C72.1 (7)N4—C23—C24—N33.0 (8)
Cu1—N2—C11—C7175.1 (4)C19—C23—C24—N3179.5 (5)
C10—N2—C11—C12178.6 (5)N4—C23—C24—C16175.3 (5)
Cu1—N2—C11—C124.2 (5)C19—C23—C24—C162.2 (8)
C8—C7—C11—N22.1 (8)C1—O1—C25—C26166.7 (12)
C6—C7—C11—N2177.8 (5)C10—O2—C27—C28173.4 (5)
C8—C7—C11—C12178.6 (5)C13—O3—C29—C30176.9 (6)
C6—C7—C11—C121.5 (8)C22—O4—C31—C32158.3 (8)

Experimental details

Crystal data
Chemical formula[CuCl(C16H16N2O2)2]ClO4
Mr735.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)9.7461 (13), 23.953 (3), 13.9777 (18)
β (°) 91.837 (2)
V3)3261.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.34 × 0.27 × 0.17
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.750, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
16840, 6045, 3209
Rint0.055
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.216, 1.05
No. of reflections6045
No. of parameters428
No. of restraints100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.43

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), 'PLATON (Spek, 2003) and DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N11.999 (5)Cu1—N32.162 (5)
Cu1—N42.003 (5)Cu1—Cl12.2847 (19)
Cu1—N22.158 (5)
N1—Cu1—N4176.8 (2)N2—Cu1—N3101.22 (17)
N1—Cu1—N280.38 (19)N1—Cu1—Cl191.64 (15)
N4—Cu1—N2102.79 (19)N4—Cu1—Cl186.22 (15)
N1—Cu1—N3100.03 (19)N2—Cu1—Cl1130.20 (13)
N4—Cu1—N379.6 (2)N3—Cu1—Cl1128.54 (15)
 

Acknowledgements

We gratefully acknowledge financial support from the Natural Science Foundation of Henan Province (2008B150008) and the Science and Technology Key Task of Henan Province (0624040011).

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR. Bonn, Germany.  Google Scholar
First citationPijper, P. L., Van der, G. H., Timmerman, H. & Nauta, W. T. (1984). Eur. J. Med. Chem. 19, 399–404.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds