metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m77-m78

Bis(tri­ethyl­ammonium) bis­­(μ-pyrazine-2,3-di­thiol­ato)bis­­(pyrazine-2,3-di­thio­lato)diferrate(III) methanol disolvate

aDepartment of Chemistry, Faculty of Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
*Correspondence e-mail: ksakai@chem.kyushu-univ.jp

(Received 1 December 2008; accepted 10 December 2008; online 17 December 2008)

In the title compound, (C6H16N)2[Fe2(C4H2N2S2)4]·2CH4O, the [FeIII(pdt)2] anion (pdt is pyrazine-2,3-dithiol­ate) forms a centrosymmetric dimer supported by two FeIII—S bonds [Fe—S = 2.4787 (4) Å]. In the crystal structure, dimers form a one-dimensional stack along the b axis via ππ stacking inter­actions, the inter­planar separation between adjacent dimers being 3.51 (2) Å. The methanol solvent mol­ecule is involved in two hydrogen bonds in which the hydroxyl group acts as a hydrogen-bond donor to the N atom of a pdt ligand and the O atom acts as an acceptor for the NH group of the triethyl­ammonium cation.

Related literature

For background information, see: Adams (1990[Adams, M. W. W. (1990). Biochim. Biophys. Acta, 1020, 115-145.]); Frey (2002[Frey, M. (2002). ChemBioChem, 3, 153-160.]); Georgakaki et al. (2003[Georgakaki, I. P., Thomson, L. M., Lyon, E. J., Hall, M. B. & Darensbourg, M. Y. (2003). Coord. Chem. Rev. 238-239, 255-266.]); Gloaguen et al. (2001[Gloaguen, F., Lawrence, J. D. & Rauchfuss, T. B. (2001). J. Am. Chem. Soc. 123, 9476-9477.]); Liu et al. (2005[Liu, X., Ibrahim, S. K., Tard, C. & Pickett, C. J. (2005). Coord. Chem. Rev. 249, 1641-1652.]); Nicolet et al. (1999[Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. (1999). Structure, 7, 13-23.]); Peters et al. (1998[Peters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. (1998). Science, 282, 1853-1858.]); Sakata (2000[Sakata, T. (2000). Bull. Chem. Soc. Jpn, 73, 297-305.]); Sun et al. (2005[Sun, L., Åkermark, B. & Ott, S. (2005). Coord. Chem. Rev. 249, 1653-1663.]); Trasatti (1972[Trasatti, S. (1972). J. Electroanal. Chem. 39, 163-184.]); Yamaguchi et al. (2008[Yamaguchi, T., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, m1557-m1558.]). For other iron(III)–dithiol­ene complexes, see: Simao et al. (2006[Simao, D., Ayllón, J. A., Rabaça, S., Figueira, M. J., Santos, I. C., Henriques, R. T. & Almeida, M. (2006). CrystEngComm, 8, 658-661.]); Yamaguchi et al. (2008[Yamaguchi, T., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, m1557-m1558.]). For the synthesis, see: Ribas et al. (2004[Ribas, X., Dias, J. C., Morgado, J., Wurst, K., Molins, E., Ruiz, E., Almeida, M., Veciana, J. & Rovira, C. (2004). Chem. Eur. J. 10, 1691-1704.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H16N)2[Fe2(C4H2N2S2)4]·2CH4O

  • Mr = 949.04

  • Monoclinic, P 21 /n

  • a = 14.2375 (15) Å

  • b = 7.9500 (8) Å

  • c = 17.7456 (18) Å

  • β = 95.293 (1)°

  • V = 2000.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 100 (2) K

  • 0.33 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.695, Tmax = 0.831

  • 10059 measured reflections

  • 4048 independent reflections

  • 3824 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.054

  • S = 1.07

  • 4048 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H24⋯N3i 0.84 1.99 2.8014 (17) 163
N5—H20⋯O1 0.93 1.86 2.7880 (17) 172
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: KENX (Sakai, 2004[Sakai, K. (2004). KENX. Kyushu University, Japan.]); software used to prepare material for publication: SHELXL97, TEXSAN (Molecular Structure Corporation, 2001[Molecular Structure Corporation (2001). TEXSAN. MSC, The Woodlands, Texas, USA.]), KENX and ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]).

Supporting information


Comment top

The Fe2S2 clusters (i.e., H-clusters) in Fe-only hydrogenases (FeHases) are known to be highly active as catalysts towards H2-evolving (HE) reaction (Adams, 1990; Peters et al., 1998; Nicolet et al., 1999; Frey, 2002). In contrast, metal iron itself exhibits much lower catalytic activity toward HE reaction than does platinum (Trasatti, 1972; Sakata, 2000). A large variety of structural and functional models of FeHases have been developed and their HE activities have been evaluated so far (Gloaguen et al., 2001; Georgakaki et al., 2003; Liu et al., 2005; Sun et al., 2005). On the other hand, an air-stable di-iron complex with a bio-relevant Fe2(µ-S)2 core, [FeIII(mnt)2]22- (mnt = maleonitriledithiolate), was found to serve as an electrode catalyst towards HE reaction in aqueous media (Yamaguchi et al., unpublished results). In the present study, [FeIII(pdt)2]22- has been synthesized to develop the more highly effective HE catalysts with a bio-relevant Fe2(µ-S)2 core. The pdt ligand has been selected to examine the effect of introducing N(imine) donor in close proximity to the active center of the HE reaction. The HE activity of (I) will be separately reported elsewhere (Yamaguchi et al., unpublished results).

The [FeIII(pdt)2]- anions form a dimer in the crystal with an inversion center located at the center of the dimer (Figure 1). The monomer-monomer association is supported by two crystallographically equivalent FeIII—S bonds [Fe1—S1i = 2.4787 (4) Å; symmetry code: (i) 1 - x, 2 - y, -z]. This structural feature well resembles those observed for other iron(III)-dithiolene complexes as follows. The above intermonomer Fe—S distance is quite comparable to those reported for (Ph4As)2[FeIII(qdt)2]2 (qdt = quinoxaline-2,3-dithiolate) [Fe—S = 2.4884 (13) Å] (Simao et al., 2006) and [FeII(15-crown-5)(OH2)2][FeIII(mnt)2]2.2(15-crown-5) [Fe—S = 2.4715 (9) and 2.4452 (9) Å] (Yamaguchi et al., 2008). The FeIII ion is considered to have a distorted square pyramidal stereochemistry; the FeIII ion is ligated by four sulfur atoms with shorter Fe—S distances [2.2264 (4)–2.2367 (4) Å] and axially ligated by a sulfur atom from the adjacent monomer with a longer Fe—S distance [2.4787 (4) Å]. Atom Fe1 is shifted out of the least-squares plane defined with four atoms S1—S4 by 0.3719 (3) Å, even though the four-atom r.m.s. deviation given in the calculation was 0.0650 Å.

The methanol molecule is stabilized with two different types of hydrogen bonding interactions (Figure 2). One type of hydrogen bond is formed between the hydroxyl unit of methanol and the nitrogen atom of pdt [O1—N3i = 2.8014 (17) Å; symmetry code: (i) 1 - x, 2 - y, -z]. The other is formed between the N—H group of the triethylammonium cation and the oxygen atom of methanol [O1—N5 = 2.7880 (17) Å].

Finally, the anion forms a one-dimensional stack along the b axis (Figure 3). The stack of anions is stabilized with a π-π interaction formed between two adjacent pdt moieties. As shown in Figure 4, a set of atoms S1—S2/C1—C4/N1—N2 and that of atoms S1ii, C1ii, and N1ii contribute to the π-π association at each interdimer association [symmetry code: (ii) 1 - x, 1 - y, -z]. The interplanar separation is calculated as 3.51 (2) Å based on the average shift of atoms S1ii, C1ii, and N1ii from the best plane defined by atoms S1—S2/C1—C4/N1—N2. An important short contact at this geometry is C1—C1ii = 3.493 (3) Å [symmetry code: (ii) 1 - x, 1 - y, -z].

Related literature top

For background information, see: Adams (1990); Frey (2002); Georgakaki et al. (2003); Gloaguen et al. (2001); Liu et al. (2005); Nicolet et al. (1999); Peters et al. (1998); Sakata (2000); Sun et al. (2005); Trasatti (1972); Yamaguchi et al. (2008). For other iron(III)–dithiolenecomplexes, see: Simao et al. (2006); Yamaguchi et al. (2008). For the synthesis, see: Ribas et al. (2004).

Experimental top

Compound (I) was prepared as follows. Pyrazine-2,3-dithiol was prepared as previously described (Ribas et al., 2004). To a suspension of pyrazine-2,3-dithiol (0.146 g, 1.0 mmol) and triethylamine (0.42 ml, 3.0 mmol) in dry tetrahydrofuran (THF, 50 ml) was slowly added a solution of FeCl3.6H2O (0.137 g, 0.5 mmol) in dry THF (5 ml) under Ar atmosphere. Although a dark-brown solid immediately precipitated, the suspension was stirred at room temperature for 18 h. The dark-brown solid deposited was collected by filtration and washed with THF. The crude material was re-dissolved in a minimum amount of methanol followed by filtration for the removal of insoluble materials. Standing of the filtrate at room temperature for several days afforded the black needles of (I), which were collected by filtration, washed with cold methanol, and dried in vacuo. Yield: 0.098 g (41%). Single crystals of (I) suitable for X-ray crystallography were grown by slow diffusion of diethyl ether into a methanol solution of (I). Analysis calculated for C30H48Fe2N10O2S8: C, 37.97; H, 5.10; N, 14.76. Found: C, 38.04; H, 4.98; N, 15.04. IR (ν, cm-1): 3028 (w), 2672 (w), 1531 (m), 1449 (m), 1416 (m), 1394 (m), 1320 (s), 1287 (m), 1196 (w), 1175 (m), 1144 (s), 1064 (m), 1045 (m), 1005 (m), 837 (m), 825 (s), 791 (m), 485 (m), 475 (m), 449 (s), 421 (m).

Refinement top

All H atoms were placed in idealized position (ring C—H = 0.95 Å, methyl C—H = 0.98 Å, methylene C—H = 0.99 Å, hydroxyl O—H = 0.84 Å and tertiary N—H = 0.93 Å), and included in the refinement in a riding-model approximation, with Uiso(H) = 1.2Ueq (ring C, methylene C and tertiary N) and Uiso(H) = 1.5Ueq (methyl C and hydroxyl O). In the final Fourier map, the highest peak was located 0.99 Å from atom S4. The deepest hole was located 0.53 Å from atom Fe1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: KENX (Sakai, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), TEXSAN (Molecular Structure Corporation, 2001), KENX (Sakai, 2004) and ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. The molecular structure of a [FeIII(pdt)2]22-, dimer, showing the atom-labeling scheme [symmetry code: (i) 1 - x, 2 - y, -z]. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at the 50% probability.
[Figure 2] Fig. 2. The molecular structure of (Et3NH)[FeIII(pdt)2].MeOH, showing how the hydrogen bonds are formed [symmetry code: (i) 1 - x, 2 - y, -z]. Hydrogen atoms except for those of N—H and O—H are omitted for clarity. Thermal ellipsoids are drawn at the 50% probability.
[Figure 3] Fig. 3. A view down the b axis, showing the manner how the anions stack along the b axis to give one-dimensional chains. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at the 50% probability.
[Figure 4] Fig. 4. A view perpendicular to the plane defined by atoms S1—S2/C1—C4/N1—N2 which has a weak π-stack to the plane defined by atoms S1ii, C1ii, and N1ii [Symmetry code: (ii) 1 - x, 1 - y, -z]. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at the 50% probability.
Bis(triethylammonium) bis(µ-pyrazine-2,3-dithiolato)bis(pyrazine-2,3-dithiolato)diferrate(III) methanol disolvate top
Crystal data top
(C6H16N)2[Fe2(C4H2N2S2)4]·2CH4OF(000) = 988
Mr = 949.04Dx = 1.576 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7956 reflections
a = 14.2375 (15) Åθ = 2.3–27.5°
b = 7.9500 (8) ŵ = 1.19 mm1
c = 17.7456 (18) ÅT = 100 K
β = 95.293 (1)°Needles, black
V = 2000.0 (4) Å30.33 × 0.18 × 0.16 mm
Z = 2
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
4048 independent reflections
Radiation source: rotating anode with a mirror focusing unit3824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1617
Tmin = 0.695, Tmax = 0.831k = 99
10059 measured reflectionsl = 2214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0258P)2 + 1.2723P]
where P = (Fo2 + 2Fc2)/3
4048 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
(C6H16N)2[Fe2(C4H2N2S2)4]·2CH4OV = 2000.0 (4) Å3
Mr = 949.04Z = 2
Monoclinic, P21/nMo Kα radiation
a = 14.2375 (15) ŵ = 1.19 mm1
b = 7.9500 (8) ÅT = 100 K
c = 17.7456 (18) Å0.33 × 0.18 × 0.16 mm
β = 95.293 (1)°
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
4048 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3824 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.831Rint = 0.013
10059 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.07Δρmax = 0.40 e Å3
4048 reflectionsΔρmin = 0.19 e Å3
240 parameters
Special details top

Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

4.6834 (0.0016) x + 6.8874 (0.0009) y - 7.1795 (0.0020) z = 7.7711 (0.0010)

* 0.0655 (0.0002) S1 * -0.0639 (0.0002) S2 * 0.0645 (0.0002) S3 * -0.0661 (0.0002) S4 0.3719 (0.0003) Fe1

Rms deviation of fitted atoms = 0.0650

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

5.7097 (0.0038) x + 6.0721 (0.0015) y - 9.5934 (0.0044) z = 7.6443 (0.0017)

* 0.0277 (0.0006) S1 * -0.0176 (0.0006) S2 * -0.0098 (0.0012) C1 * -0.0122 (0.0011) C2 * -0.0067 (0.0012) C3 * 0.0190 (0.0011) C4 * -0.0173 (0.0010) N1 * 0.0170 (0.0010) N2 - 3.5344 (0.0008) S1_$2 - 3.4970 (0.0017) C1_$2 - 3.4894 (0.0014) N1_$2

Rms deviation of fitted atoms = 0.0170

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.404540 (13)0.93135 (3)0.023150 (11)0.01057 (6)
S10.54285 (2)0.79904 (4)0.029127 (18)0.01130 (8)
S20.35609 (2)0.79099 (5)0.082403 (19)0.01420 (8)
S30.25466 (2)1.00013 (5)0.034182 (19)0.01363 (8)
S40.43700 (2)0.97513 (4)0.147331 (18)0.01193 (8)
O10.89754 (8)0.60915 (14)0.01530 (6)0.0209 (2)
H240.87670.68380.04590.031*
N10.61230 (9)0.57967 (15)0.06370 (7)0.0151 (3)
N20.44848 (9)0.57864 (16)0.16542 (7)0.0163 (3)
N30.18638 (8)1.19999 (16)0.13603 (7)0.0147 (2)
N40.34506 (9)1.16211 (16)0.24079 (7)0.0141 (2)
N50.86540 (8)0.70235 (16)0.13156 (7)0.0151 (3)
H200.88190.67060.08410.018*
C10.53659 (10)0.67055 (18)0.05203 (8)0.0122 (3)
C20.60532 (11)0.48707 (19)0.12700 (9)0.0171 (3)
H10.65710.41840.13770.021*
C30.45350 (10)0.67025 (18)0.10198 (8)0.0132 (3)
C40.52528 (11)0.48836 (19)0.17707 (8)0.0178 (3)
H20.52460.42240.22180.021*
C50.26017 (10)1.10755 (18)0.12000 (8)0.0124 (3)
C60.19204 (10)1.27363 (19)0.20475 (8)0.0167 (3)
H30.14121.34160.21790.020*
C70.34105 (10)1.09206 (18)0.17242 (8)0.0119 (3)
C80.26953 (10)1.25302 (19)0.25642 (8)0.0161 (3)
H40.26961.30470.30470.019*
C90.92078 (11)0.5916 (2)0.18858 (8)0.0181 (3)
H50.89090.59360.23680.022*
H60.98560.63660.19850.022*
C100.92556 (12)0.4119 (2)0.16109 (9)0.0229 (3)
H70.86150.36870.14890.034*
H80.95830.34230.20080.034*
H90.95990.40820.11580.034*
C110.76030 (10)0.6761 (2)0.13087 (9)0.0197 (3)
H100.74710.55380.12960.024*
H110.72890.72590.08400.024*
C120.71813 (11)0.7525 (2)0.19835 (9)0.0253 (4)
H130.75300.71270.24510.038*
H120.65180.71890.19770.038*
H140.72230.87540.19580.038*
C130.89199 (11)0.8848 (2)0.14175 (9)0.0193 (3)
H160.89500.91410.19610.023*
H150.84280.95570.11440.023*
C140.98672 (13)0.9219 (2)0.11225 (10)0.0283 (4)
H191.03620.85780.14160.042*
H181.00041.04250.11730.042*
H170.98460.88940.05890.042*
C160.85896 (13)0.4489 (2)0.03924 (10)0.0263 (4)
H210.86000.43780.09420.040*
H220.79380.44060.02600.040*
H230.89680.35880.01390.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01022 (10)0.01220 (11)0.00912 (10)0.00046 (7)0.00004 (7)0.00049 (7)
S10.01119 (16)0.01259 (17)0.00985 (15)0.00098 (12)0.00040 (12)0.00008 (12)
S20.01256 (17)0.01665 (18)0.01285 (16)0.00100 (13)0.00173 (13)0.00337 (13)
S30.01063 (16)0.01853 (19)0.01144 (16)0.00053 (13)0.00050 (12)0.00270 (13)
S40.01160 (16)0.01452 (17)0.00948 (16)0.00168 (13)0.00002 (12)0.00010 (12)
O10.0232 (6)0.0213 (6)0.0173 (5)0.0043 (5)0.0036 (4)0.0003 (4)
N10.0165 (6)0.0126 (6)0.0166 (6)0.0007 (5)0.0039 (5)0.0010 (5)
N20.0208 (6)0.0141 (6)0.0140 (6)0.0008 (5)0.0009 (5)0.0018 (5)
N30.0138 (6)0.0149 (6)0.0156 (6)0.0002 (5)0.0020 (5)0.0004 (5)
N40.0167 (6)0.0131 (6)0.0125 (6)0.0002 (5)0.0017 (5)0.0004 (5)
N50.0136 (6)0.0187 (7)0.0124 (6)0.0002 (5)0.0013 (5)0.0010 (5)
C10.0151 (7)0.0104 (7)0.0111 (6)0.0007 (5)0.0019 (5)0.0008 (5)
C20.0192 (7)0.0120 (7)0.0211 (7)0.0014 (6)0.0067 (6)0.0012 (6)
C30.0156 (7)0.0109 (7)0.0132 (6)0.0008 (5)0.0020 (5)0.0010 (5)
C40.0253 (8)0.0129 (7)0.0157 (7)0.0000 (6)0.0053 (6)0.0027 (6)
C50.0133 (7)0.0120 (7)0.0122 (6)0.0016 (5)0.0023 (5)0.0011 (5)
C60.0164 (7)0.0158 (7)0.0183 (7)0.0017 (6)0.0043 (6)0.0013 (6)
C70.0137 (7)0.0101 (7)0.0120 (6)0.0013 (5)0.0018 (5)0.0019 (5)
C80.0197 (7)0.0156 (7)0.0134 (7)0.0003 (6)0.0035 (6)0.0017 (5)
C90.0147 (7)0.0233 (8)0.0155 (7)0.0015 (6)0.0036 (6)0.0039 (6)
C100.0240 (8)0.0231 (9)0.0207 (8)0.0039 (6)0.0017 (6)0.0045 (6)
C110.0122 (7)0.0259 (8)0.0201 (7)0.0001 (6)0.0033 (6)0.0002 (6)
C120.0169 (8)0.0336 (9)0.0255 (8)0.0008 (7)0.0028 (6)0.0024 (7)
C130.0208 (8)0.0184 (8)0.0177 (7)0.0012 (6)0.0033 (6)0.0001 (6)
C140.0294 (9)0.0274 (9)0.0283 (9)0.0089 (7)0.0048 (7)0.0002 (7)
C160.0303 (9)0.0248 (9)0.0228 (8)0.0009 (7)0.0038 (7)0.0038 (7)
Geometric parameters (Å, º) top
Fe1—S12.2264 (4)C9—C101.513 (2)
Fe1—S32.2289 (4)C11—C121.515 (2)
Fe1—S22.2341 (4)C13—C141.520 (2)
Fe1—S42.2367 (4)N5—H200.9300
Fe1—S1i2.4787 (4)C2—H10.9500
S1—C11.7611 (14)C4—H20.9500
S1—Fe1i2.4787 (4)C6—H30.9500
S2—C31.7477 (15)C8—H40.9500
S3—C51.7415 (14)C9—H50.9900
S4—C71.7438 (14)C9—H60.9900
O1—C161.436 (2)C10—H70.9800
O1—H240.8400C10—H80.9800
N1—C11.3297 (19)C10—H90.9800
N1—C21.339 (2)C11—H100.9900
N2—C31.3372 (19)C11—H110.9900
N2—C41.340 (2)C12—H130.9800
N3—C51.3341 (19)C12—H120.9800
N3—C61.3483 (19)C12—H140.9800
N4—C71.3315 (18)C13—H160.9900
N4—C81.3456 (19)C13—H150.9900
N5—C131.506 (2)C14—H190.9800
N5—C91.5079 (18)C14—H180.9800
N5—C111.5097 (19)C14—H170.9800
C1—C31.411 (2)C16—H210.9800
C2—C41.379 (2)C16—H220.9800
C5—C71.417 (2)C16—H230.9800
C6—C81.378 (2)
C1···C1ii3.493 (3)
S1—Fe1—S3164.042 (16)C4—C2—H1119.0
S1—Fe1—S290.420 (15)N2—C4—H2118.6
S3—Fe1—S288.401 (15)C2—C4—H2118.6
S1—Fe1—S485.705 (14)N3—C6—H3119.1
S3—Fe1—S489.299 (14)C8—C6—H3119.1
S2—Fe1—S4157.445 (17)N4—C8—H4118.9
S1—Fe1—S1i97.462 (14)C6—C8—H4118.9
S3—Fe1—S1i98.369 (15)N5—C9—H5109.3
S2—Fe1—S1i101.461 (15)C10—C9—H5109.3
S4—Fe1—S1i101.073 (15)N5—C9—H6109.3
C1—S1—Fe1104.91 (5)C10—C9—H6109.3
C1—S1—Fe1i100.94 (5)H5—C9—H6107.9
Fe1—S1—Fe1i82.538 (14)C9—C10—H7109.5
C3—S2—Fe1104.58 (5)C9—C10—H8109.5
C5—S3—Fe1103.35 (5)H7—C10—H8109.5
C7—S4—Fe1103.82 (5)C9—C10—H9109.5
C1—N1—C2115.52 (13)H7—C10—H9109.5
C3—N2—C4116.15 (13)H8—C10—H9109.5
C5—N3—C6116.71 (12)N5—C11—H10108.8
C7—N4—C8116.39 (12)C12—C11—H10108.8
C13—N5—C9111.84 (11)N5—C11—H11108.8
C13—N5—C11111.85 (12)C12—C11—H11108.8
C9—N5—C11112.41 (12)H10—C11—H11107.7
N1—C1—C3123.08 (13)C11—C12—H13109.5
N1—C1—S1117.51 (11)C11—C12—H12109.5
C3—C1—S1119.40 (11)H13—C12—H12109.5
N1—C2—C4121.97 (14)C11—C12—H14109.5
N2—C3—C1120.42 (13)H13—C12—H14109.5
N2—C3—S2119.00 (11)H12—C12—H14109.5
C1—C3—S2120.58 (11)N5—C13—H16109.3
N2—C4—C2122.84 (14)C14—C13—H16109.3
N3—C5—C7121.06 (13)N5—C13—H15109.3
N3—C5—S3118.93 (11)C14—C13—H15109.3
C7—C5—S3119.98 (11)H16—C13—H15108.0
N3—C6—C8121.84 (14)C13—C14—H19109.5
N4—C7—C5121.71 (13)C13—C14—H18109.5
N4—C7—S4119.13 (11)H19—C14—H18109.5
C5—C7—S4119.14 (11)C13—C14—H17109.5
N4—C8—C6122.20 (13)H19—C14—H17109.5
N5—C9—C10111.80 (12)H18—C14—H17109.5
N5—C11—C12113.75 (12)O1—C16—H21109.5
N5—C13—C14111.52 (13)O1—C16—H22109.5
C16—O1—H24109.5H21—C16—H22109.5
C13—N5—H20106.8O1—C16—H23109.5
C9—N5—H20106.8H21—C16—H23109.5
C11—N5—H20106.8H22—C16—H23109.5
N1—C2—H1119.0
C2—N1—C1—C30.5 (2)Fe1—S3—C5—N3164.68 (10)
C2—N1—C1—S1178.40 (11)Fe1—S3—C5—C717.12 (12)
Fe1—S1—C1—N1178.17 (10)C5—N3—C6—C80.8 (2)
Fe1i—S1—C1—N193.07 (11)C8—N4—C7—C52.2 (2)
Fe1—S1—C1—C30.74 (12)C8—N4—C7—S4178.97 (11)
Fe1i—S1—C1—C385.84 (11)N3—C5—C7—N43.2 (2)
C1—N1—C2—C40.9 (2)S3—C5—C7—N4174.98 (11)
C4—N2—C3—C10.9 (2)N3—C5—C7—S4177.96 (11)
C4—N2—C3—S2179.75 (11)S3—C5—C7—S43.87 (16)
N1—C1—C3—N21.4 (2)Fe1—S4—C7—N4169.57 (10)
S1—C1—C3—N2177.43 (11)Fe1—S4—C7—C511.55 (12)
N1—C1—C3—S2179.20 (11)C7—N4—C8—C60.2 (2)
S1—C1—C3—S21.95 (17)N3—C6—C8—N41.8 (2)
Fe1—S2—C3—N2175.86 (10)C13—N5—C9—C10156.73 (13)
Fe1—S2—C3—C13.53 (12)C11—N5—C9—C1076.48 (16)
C3—N2—C4—C20.5 (2)C13—N5—C11—C1252.48 (17)
N1—C2—C4—N21.5 (2)C9—N5—C11—C1274.31 (17)
C6—N3—C5—C71.5 (2)C9—N5—C13—C1475.40 (15)
C6—N3—C5—S3176.64 (11)C11—N5—C13—C14157.50 (13)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H24···N3i0.841.992.8014 (17)163
N5—H20···O10.931.862.7880 (17)172
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula(C6H16N)2[Fe2(C4H2N2S2)4]·2CH4O
Mr949.04
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)14.2375 (15), 7.9500 (8), 17.7456 (18)
β (°) 95.293 (1)
V3)2000.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.33 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.695, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
10059, 4048, 3824
Rint0.013
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.07
No. of reflections4048
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), TEXSAN (Molecular Structure Corporation, 2001), KENX (Sakai, 2004) and ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H24···N3i0.841.992.8014 (17)162.7
N5—H20···O10.931.862.7880 (17)172.16
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (A) (No. 17205008), a Grant-in-Aid for Specially Promoted Research (No. 18002016), and a Grant-in-Aid for the Global COE Program (`Science for Future Molecular Systems') from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

First citationAdams, M. W. W. (1990). Biochim. Biophys. Acta, 1020, 115–145.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrey, M. (2002). ChemBioChem, 3, 153–160.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGeorgakaki, I. P., Thomson, L. M., Lyon, E. J., Hall, M. B. & Darensbourg, M. Y. (2003). Coord. Chem. Rev. 238–239, 255–266.  Web of Science CrossRef CAS Google Scholar
First citationGloaguen, F., Lawrence, J. D. & Rauchfuss, T. B. (2001). J. Am. Chem. Soc. 123, 9476–9477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLiu, X., Ibrahim, S. K., Tard, C. & Pickett, C. J. (2005). Coord. Chem. Rev. 249, 1641–1652.  Web of Science CrossRef CAS Google Scholar
First citationMolecular Structure Corporation (2001). TEXSAN. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationNicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. (1999). Structure, 7, 13–23.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. (1998). Science, 282, 1853–1858.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRibas, X., Dias, J. C., Morgado, J., Wurst, K., Molins, E., Ruiz, E., Almeida, M., Veciana, J. & Rovira, C. (2004). Chem. Eur. J. 10, 1691–1704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSakai, K. (2004). KENX. Kyushu University, Japan.  Google Scholar
First citationSakata, T. (2000). Bull. Chem. Soc. Jpn, 73, 297–305.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimao, D., Ayllón, J. A., Rabaça, S., Figueira, M. J., Santos, I. C., Henriques, R. T. & Almeida, M. (2006). CrystEngComm, 8, 658–661.  CAS Google Scholar
First citationSun, L., Åkermark, B. & Ott, S. (2005). Coord. Chem. Rev. 249, 1653–1663.  Web of Science CrossRef CAS Google Scholar
First citationTrasatti, S. (1972). J. Electroanal. Chem. 39, 163–184.  CrossRef CAS Web of Science Google Scholar
First citationYamaguchi, T., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, m1557–m1558.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m77-m78
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds