metal-organic compounds
catena-Poly[copper(I)-bis(μ-trifluoromethanesulfonato-κ2O:O′)-copper(I)-bis(μ-trimethyl trithiophosphite)-κ2P:S;κ2S:P]
aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
*Correspondence e-mail: hgr@sun.ac.za
The title compound, [Cu2(CF3SO3)2(C3H9PS3)2]n, crystallizes as infinite chains in which two trimethyl trithiophosphite ligands and two trifluoromethanesulfonate anions bridge the essentially tetrahedrally coordinated CuI ions in an alternating fashion. The P and one S atom of each trimethyl trithiophosphite ligand are employed for coordination. The molecular structure exhibits the rare motif of copper(I) bridged by two trifluoromethanesulfonate anions generating eight-membered rings.
Related literature
For related structures, see: Blue et al. (2006); Kataeva et al. (1995, 2000); Knight & Keller (2006); Kursheva et al. (2003); Stibrany & Potenza (2007); Stibrany et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED.
Supporting information
10.1107/S1600536808041809/lh2742sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808041809/lh2742Isup2.hkl
trimethyl trithiophosphite (202 mg, 1.2 mmol) was dissolved in thf (20 ml) and [Cu(CH3CN)4]CF3SO3 (440 mg, 1.2 mmol) added. After 15 min. a slight turbidity in the colourless solution was observed and after 1.5 h all volatiles were removed in vacuo affording a yellowish oil. Trituration with diethyl ether (ca 20 ml) and twice with ca 20 ml toluene caused the oil to solidify furnishing the colourless microcrystalline product in quantitative yield. A suitable crystal for X-ray diffraction was grown from thf layered with pentane.
NMR (CD3CN): 1H (300 MHz): δ 2.31 p.p.m. (d, 3JPH 12.1 Hz, 1JCH 155 Hz); 13C{1H} (75 MHz): δ 14.2 p.p.m. (d, 2JPC 10.1 Hz); 31P{1H} (121 MHz): δ 142.1 p.p.m. (s).
IR (cm-1): 2999 (CH3), 2924 (CH3), 1605, 1421 (CH3), 1284 (CF3SO3), 1120 (CF3SO3), 1169 (CF3SO3), 1049, 1019, 962, 764, 734, 668, 626 and 577.
FAB-MS in nitrobenzyl alcohol matrix (m/z): 385 (10%, M+H), 401 (15).
All H atoms were positioned geometrically (C—H = 0.98 Å) and constrained to ride on their parent atoms; Uiso(H) values were set at 1.5 times Ueq(C).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).[Cu2(CF3SO3)2(C3H9PS3)2] | F(000) = 768 |
Mr = 769.78 | Dx = 1.982 Mg m−3 |
Monoclinic, P21/c | Melting point: 413 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 8.8347 (15) Å | Cell parameters from 4358 reflections |
b = 18.306 (3) Å | θ = 2.4–26.3° |
c = 8.1731 (14) Å | µ = 2.49 mm−1 |
β = 102.674 (3)° | T = 100 K |
V = 1289.6 (4) Å3 | Block, colourless |
Z = 2 | 0.10 × 0.08 × 0.04 mm |
Bruker APEX CCD area-detector diffractometer | 2612 independent reflections |
Radiation source: fine-focus sealed tube | 2425 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 26.4°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −11→11 |
Tmin = 0.789, Tmax = 0.907 | k = −14→22 |
7349 measured reflections | l = −9→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0393P)2 + 1.5175P] where P = (Fo2 + 2Fc2)/3 |
2612 reflections | (Δ/σ)max < 0.001 |
148 parameters | Δρmax = 0.87 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
[Cu2(CF3SO3)2(C3H9PS3)2] | V = 1289.6 (4) Å3 |
Mr = 769.78 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.8347 (15) Å | µ = 2.49 mm−1 |
b = 18.306 (3) Å | T = 100 K |
c = 8.1731 (14) Å | 0.10 × 0.08 × 0.04 mm |
β = 102.674 (3)° |
Bruker APEX CCD area-detector diffractometer | 2612 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 2425 reflections with I > 2σ(I) |
Tmin = 0.789, Tmax = 0.907 | Rint = 0.021 |
7349 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.87 e Å−3 |
2612 reflections | Δρmin = −0.42 e Å−3 |
148 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.20918 (3) | 0.512402 (17) | 0.47201 (4) | 0.01851 (11) | |
P1 | 0.02869 (7) | 0.58055 (3) | 0.31859 (8) | 0.01703 (15) | |
S1 | −0.19119 (7) | 0.52875 (3) | 0.26779 (8) | 0.01850 (14) | |
S2 | 0.03767 (8) | 0.61564 (4) | 0.07703 (8) | 0.02558 (16) | |
S3 | 0.00504 (8) | 0.68172 (3) | 0.42847 (8) | 0.02322 (16) | |
S4 | 0.54023 (7) | 0.58664 (3) | 0.66022 (8) | 0.01807 (15) | |
F1 | 0.66632 (19) | 0.70162 (9) | 0.8235 (2) | 0.0303 (4) | |
F2 | 0.5529 (3) | 0.72252 (11) | 0.5687 (2) | 0.0546 (6) | |
F3 | 0.4170 (2) | 0.70427 (11) | 0.7523 (3) | 0.0495 (5) | |
O1 | 0.4142 (2) | 0.57889 (10) | 0.5143 (2) | 0.0236 (4) | |
O2 | 0.6913 (2) | 0.57583 (11) | 0.6216 (3) | 0.0357 (5) | |
O3 | 0.5166 (2) | 0.55310 (12) | 0.8091 (2) | 0.0346 (5) | |
C1 | −0.3285 (3) | 0.60237 (15) | 0.2002 (4) | 0.0255 (6) | |
H1A | −0.3181 | 0.6390 | 0.2895 | 0.038* | |
H1B | −0.4343 | 0.5827 | 0.1756 | 0.038* | |
H1C | −0.3073 | 0.6252 | 0.0991 | 0.038* | |
C2 | 0.2468 (3) | 0.6205 (2) | 0.1033 (4) | 0.0350 (7) | |
H2A | 0.2907 | 0.6501 | 0.2024 | 0.052* | |
H2B | 0.2720 | 0.6430 | 0.0038 | 0.052* | |
H2C | 0.2906 | 0.5712 | 0.1180 | 0.052* | |
C3 | 0.0397 (3) | 0.65795 (15) | 0.6490 (3) | 0.0260 (6) | |
H3A | −0.0436 | 0.6259 | 0.6681 | 0.039* | |
H3B | 0.0420 | 0.7025 | 0.7159 | 0.039* | |
H3C | 0.1394 | 0.6326 | 0.6821 | 0.039* | |
C4 | 0.5454 (3) | 0.68447 (15) | 0.7022 (4) | 0.0253 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01952 (17) | 0.01793 (18) | 0.01786 (18) | 0.00236 (11) | 0.00363 (12) | 0.00126 (12) |
S1 | 0.0200 (3) | 0.0165 (3) | 0.0185 (3) | 0.0003 (2) | 0.0033 (2) | 0.0018 (2) |
S2 | 0.0240 (3) | 0.0364 (4) | 0.0163 (3) | −0.0004 (3) | 0.0043 (3) | 0.0077 (3) |
S3 | 0.0312 (3) | 0.0145 (3) | 0.0231 (3) | 0.0005 (3) | 0.0041 (3) | 0.0012 (2) |
S4 | 0.0199 (3) | 0.0153 (3) | 0.0187 (3) | −0.0015 (2) | 0.0036 (2) | −0.0016 (2) |
P1 | 0.0196 (3) | 0.0170 (3) | 0.0146 (3) | 0.0008 (2) | 0.0039 (2) | 0.0022 (2) |
F1 | 0.0341 (9) | 0.0235 (8) | 0.0320 (9) | −0.0079 (7) | 0.0045 (7) | −0.0098 (7) |
F2 | 0.0967 (17) | 0.0278 (10) | 0.0348 (11) | −0.0160 (10) | 0.0046 (11) | 0.0099 (8) |
F3 | 0.0342 (10) | 0.0369 (11) | 0.0778 (15) | 0.0048 (8) | 0.0130 (10) | −0.0267 (11) |
O1 | 0.0255 (10) | 0.0248 (10) | 0.0189 (9) | −0.0059 (8) | 0.0015 (7) | −0.0002 (7) |
O2 | 0.0234 (10) | 0.0304 (11) | 0.0537 (14) | −0.0018 (8) | 0.0095 (9) | −0.0214 (10) |
O3 | 0.0457 (13) | 0.0321 (11) | 0.0218 (10) | −0.0161 (10) | −0.0014 (9) | 0.0064 (9) |
C1 | 0.0225 (13) | 0.0222 (14) | 0.0294 (15) | 0.0042 (10) | 0.0002 (11) | 0.0080 (11) |
C2 | 0.0248 (14) | 0.056 (2) | 0.0254 (15) | −0.0064 (14) | 0.0072 (11) | 0.0069 (14) |
C3 | 0.0373 (15) | 0.0226 (14) | 0.0176 (13) | 0.0004 (11) | 0.0053 (11) | −0.0044 (11) |
C4 | 0.0316 (14) | 0.0176 (13) | 0.0256 (14) | 0.0007 (11) | 0.0039 (11) | −0.0006 (11) |
Cu1—S1i | 2.2943 (8) | S4—O3 | 1.419 (2) |
Cu1—P1 | 2.1895 (7) | F1—C4 | 1.326 (3) |
Cu1—O1 | 2.1466 (18) | F2—C4 | 1.308 (3) |
Cu1—O2ii | 2.065 (2) | F3—C4 | 1.338 (3) |
P1—S1 | 2.1192 (9) | C1—H1A | 0.9800 |
P1—S2 | 2.0941 (9) | C1—H1B | 0.9800 |
P1—S3 | 2.0886 (10) | C1—H1C | 0.9800 |
S1—C1 | 1.816 (3) | C2—H2A | 0.9800 |
S2—C2 | 1.815 (3) | C2—H2B | 0.9800 |
S3—C3 | 1.814 (3) | C2—H2C | 0.9800 |
S4—C4 | 1.822 (3) | C3—H3A | 0.9800 |
S4—O1 | 1.4490 (19) | C3—H3B | 0.9800 |
S4—O2 | 1.451 (2) | C3—H3C | 0.9800 |
P1—Cu1—S1i | 121.88 (3) | F1—C4—S4 | 110.88 (19) |
P1—S1—Cu1i | 102.25 (3) | F2—C4—S4 | 111.7 (2) |
S4—O1—Cu1 | 131.05 (11) | F3—C4—S4 | 109.64 (19) |
S4—O2—Cu1ii | 132.38 (13) | F1—C4—F3 | 107.7 (2) |
O1—Cu1—S1i | 105.35 (5) | F2—C4—F1 | 108.5 (2) |
O1—Cu1—P1 | 104.59 (6) | F2—C4—F3 | 108.2 (2) |
O2ii—Cu1—S1i | 102.03 (7) | S1—C1—H1A | 109.5 |
O2ii—Cu1—P1 | 123.32 (7) | S1—C1—H1B | 109.5 |
O2ii—Cu1—O1 | 95.18 (8) | S1—C1—H1C | 109.5 |
C1—S1—Cu1i | 110.36 (10) | H1A—C1—H1B | 109.5 |
S1—P1—Cu1 | 112.23 (4) | H1A—C1—H1C | 109.5 |
S2—P1—Cu1 | 122.77 (4) | H1B—C1—H1C | 109.5 |
S3—P1—Cu1 | 112.83 (4) | S2—C2—H2A | 109.5 |
S2—P1—S1 | 100.09 (4) | S2—C2—H2B | 109.5 |
S3—P1—S1 | 107.89 (4) | S2—C2—H2C | 109.5 |
S3—P1—S2 | 99.29 (4) | H2A—C2—H2B | 109.5 |
C1—S1—P1 | 104.48 (9) | H2A—C2—H2C | 109.5 |
C2—S2—P1 | 98.73 (10) | H2B—C2—H2C | 109.5 |
C3—S3—P1 | 101.75 (9) | S3—C3—H3A | 109.5 |
O1—S4—O2 | 112.64 (13) | S3—C3—H3B | 109.5 |
O3—S4—O1 | 115.63 (12) | S3—C3—H3C | 109.5 |
O3—S4—O2 | 116.31 (14) | H3A—C3—H3B | 109.5 |
O1—S4—C4 | 103.54 (12) | H3A—C3—H3C | 109.5 |
O2—S4—C4 | 100.87 (13) | H3B—C3—H3C | 109.5 |
O3—S4—C4 | 105.44 (13) | ||
Cu1—P1—S1—Cu1i | 47.73 (4) | O3—S4—O1—Cu1 | −10.1 (2) |
Cu1—P1—S1—C1 | 162.81 (10) | O3—S4—O2—Cu1ii | 75.6 (2) |
Cu1—P1—S2—C2 | −30.47 (13) | C4—S4—O1—Cu1 | −124.88 (16) |
Cu1—P1—S3—C3 | −36.26 (11) | C4—S4—O2—Cu1ii | −170.98 (18) |
S1i—Cu1—P1—S1 | −58.38 (5) | S1—P1—S2—C2 | −155.34 (12) |
S1i—Cu1—P1—S2 | −177.61 (4) | S1—P1—S3—C3 | 88.30 (10) |
S1i—Cu1—P1—S3 | 63.76 (5) | S2—P1—S1—C1 | −65.38 (11) |
S1i—Cu1—O1—S4 | 13.26 (16) | S2—P1—S3—C3 | −167.85 (10) |
P1—Cu1—O1—S4 | 142.85 (14) | S3—P1—S1—C1 | 37.90 (11) |
S2—P1—S1—Cu1i | 179.54 (3) | S3—P1—S2—C2 | 94.47 (12) |
S3—P1—S1—Cu1i | −77.18 (4) | O1—S4—C4—F1 | −173.61 (18) |
O1—Cu1—P1—S1 | −177.33 (6) | O1—S4—C4—F2 | −52.4 (2) |
O1—Cu1—P1—S2 | 63.44 (7) | O1—S4—C4—F3 | 67.5 (2) |
O1—Cu1—P1—S3 | −55.19 (6) | O2—S4—C4—F1 | −56.9 (2) |
O2ii—Cu1—P1—S1 | 76.24 (8) | O2—S4—C4—F2 | 64.3 (2) |
O2ii—Cu1—P1—S2 | −42.98 (9) | O2—S4—C4—F3 | −175.7 (2) |
O2ii—Cu1—P1—S3 | −161.62 (8) | O3—S4—C4—F1 | 64.5 (2) |
O2ii—Cu1—O1—S4 | −90.74 (16) | O3—S4—C4—F2 | −174.3 (2) |
O1—S4—O2—Cu1ii | −61.2 (2) | O3—S4—C4—F3 | −54.3 (2) |
O2—S4—O1—Cu1 | 127.02 (15) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(CF3SO3)2(C3H9PS3)2] |
Mr | 769.78 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 8.8347 (15), 18.306 (3), 8.1731 (14) |
β (°) | 102.674 (3) |
V (Å3) | 1289.6 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.49 |
Crystal size (mm) | 0.10 × 0.08 × 0.04 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.789, 0.907 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7349, 2612, 2425 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.075, 1.04 |
No. of reflections | 2612 |
No. of parameters | 148 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.87, −0.42 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).
Cu1—S1i | 2.2943 (8) | P1—S2 | 2.0941 (9) |
Cu1—P1 | 2.1895 (7) | P1—S3 | 2.0886 (10) |
Cu1—O1 | 2.1466 (18) | S1—C1 | 1.816 (3) |
Cu1—O2ii | 2.065 (2) | S2—C2 | 1.815 (3) |
P1—S1 | 2.1192 (9) | S3—C3 | 1.814 (3) |
P1—Cu1—S1i | 121.88 (3) | S2—P1—S1 | 100.09 (4) |
O1—Cu1—S1i | 105.35 (5) | S3—P1—S1 | 107.89 (4) |
O1—Cu1—P1 | 104.59 (6) | S3—P1—S2 | 99.29 (4) |
O2ii—Cu1—S1i | 102.03 (7) | C1—S1—P1 | 104.48 (9) |
O2ii—Cu1—P1 | 123.32 (7) | C2—S2—P1 | 98.73 (10) |
O2ii—Cu1—O1 | 95.18 (8) | C3—S3—P1 | 101.75 (9) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
We thank the National Research Foundation (NRF) of South Africa for financial support.
References
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Blue, E. D., Gunnoe, T. B., Petersen, J. L. & Boyle, P. D. (2006). J. Organomet. Chem. 691, 5988–5993. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kataeva, O. N., Krivolapov, D. B., Gubaidullin, A. T., Litvinov, I. A., Kursheva, L. I. & Katsyuba, S. A. (2000). J. Mol. Struct. 554, 127–140. Web of Science CSD CrossRef CAS Google Scholar
Kataeva, O. N., Litvinov, I. A., Naumov, V. A., Kursheva, L. I. & Batyeva, E. S. (1995). Inorg. Chem. 34, 5171–5174. CrossRef CAS Web of Science Google Scholar
Knight, D. A. & Keller, S. W. (2006). J. Chem. Crystallogr. 36, 531–542. Web of Science CSD CrossRef CAS Google Scholar
Kursheva, L. I., Kataeva, O. N., Gubaidullin, A. T., Khasyanzyanova, F. S., Vakhitov, E. V., Krivolapov, D. B. & Batyeva, E. S. (2003). Russ. J. Gen. Chem. 73, 1516–1521. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stibrany, R. T. & Potenza, J. A. (2007). Private communication (Refcode: VIFSEJ). CCDC, Cambridge, England. Google Scholar
Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2006). Private communication (Refcode: CEJGEE). CCDC, Cambridge, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structure of the title compound (I), consists of chains of tetrahedrally coordinated CuI centres that are bridged by two P(SMe)3 ligands in a κ2P:S-fashion, forming 6-membered rings in the chair conformation. Two trifluoromethanesulfonate anions each employ two oxygen atoms to bridge two copper atoms, yielding 8-membered rings. The copper atoms thus form spiro-junctions between the alternating 6- and 8-membered rings generated by the trithiophosphite and trifluoromethanesulfonate ligands; a point of symmetry is located in the centre of each ring.
The crystal structure of (I) therefore is related to compounds of the [CuX{P(SR)3}]n (R = alkyl, phenyl; X = Cl, Br, I, SCN) type which also show the same arrangement of 6-membered rings formed by two trithiophosphite ligands where the copper centres also form spiro-junctions to the 4-membered (8-membered) rings generated by two bridging (pseudo)halide (thiocyanate) anions (Kataeva et al., 1995; Kataeva et al., 2000). Cu—P and Cu—S bond lengths in (I) are shorter than in most halide analogues. This difference might be caused by the harder and more electron-withdrawing nature of the trifluoromethanesulfonate counter-anion. The average Cu—P bond length in the halide complexes is 2.22 Å and the average Cu—S distance 2.39 Å. An exception is the cluster formed by triisopropyltrithiophosphite with 4 CuCl units [Cu—P 2.207 (7) Å, Cu—S 2.185 (8) Å] that also might exert a similar electron-withdrawing effect on the ligand (Kursheva et al., 2003).
Tetrahydrofuran (thf), from which (I) was crystallized, does not act as a ligand towards CuI in the present structure. This behaviour of (I) is in contrast to the complex [Cu(CH3CN)2(PPh3)2]CF3SO3 which spontaneously yields crystals of [Cu(CF3SO3)(PPh3)2(thf)] when dissolved in thf (Knight & Keller, 2006). In the latter complex, the Cu—O(thf) bond is shorter [2.125 (2) Å] than the Cu—O(CF3SO3) bond [2.168 (2) Å] in (I).
Two copper centres bridged by two trifluoromethanesulfonate anions, each employing two oxygen atoms for coordination, is a very rare motif. Only two other structures of CuI (Stibrany et al., 2006; Stibrany & Potenza, 2007) and one of CuII (Blue et al., 2006) are known that exhibit such an arrangement. The former examples comprise tetrahedral CuI centres with the remaining sites occupied by phosphine or imine donors where the Cu—O distances of the former structure [2.111 (4) and 2.189 (4) Å] are comparable to those in (I) whereas such bonds are longer [2.336 (6) and 2.350 (7) Å] in the latter structure.