organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-tert-Butyl­phen­yl)-1-(4-fluoro­phen­yl)-3-hy­droxy­prop-2-en-1-one

aHubei Key Laboratory of Bioanalytical Techniques, Hubei Normal University, Huangshi 435002, People's Republic of China, and bCollege of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
*Correspondence e-mail: zcy800204@163.com

(Received 5 December 2008; accepted 12 December 2008; online 17 December 2008)

The title mol­ecule, C19H19FO2, exits in the enol form with a dihedral angle of 33.06 (8)° between the two benzene rings. The mol­ecular conformation is stabilized in part by an intra­molecular O—H⋯O hydrogen bond.

Related literature

For background information on 1,3-diketones, see: Baskar & Roesky (2005[Baskar, V. & Roesky, P. W. (2005). Z. Anorg. Allg. Chem. 631, 2782-2785.]); Bassett et al. (2004[Bassett, A. P., Magennis, S. W., Glover, P. B., Lewis, D. J., Spencer, N., Parsons, S., Williams, R. M., Cola, L. D. & Pikramenou, Z. (2004). J. Am. Chem. Soc. 126, 9413-9424.]); Bertolasi et al. (1991[Bertolasi, V., Cilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917-4925.]); Jang et al. (2006[Jang, H., Shin, C. H., Jung, B. J., Kim, D. H., Shim, H. K. & Do, Y. (2006). Eur. J. Inorg. Chem. 4, 718-725.]); Soldatov et al. (2003[Soldatov, D. V., Zanina, A. S., Enright, G. D., Ratcliffe, C. I. & Ripmeester, J. A. (2003). Cryst. Growth & Des. 3, 1005-1013.]); Vila et al. (1991[Vila, A. J., Lagier, C. M. & Olivieri, A. C. (1991). J. Phys. Chem. 95, 5069-5073.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19FO2

  • Mr = 298.34

  • Monoclinic, P 21 /n

  • a = 9.8349 (12) Å

  • b = 10.0163 (13) Å

  • c = 16.232 (2) Å

  • β = 97.788 (2)°

  • V = 1584.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.993, Tmax = 0.995

  • 12039 measured reflections

  • 3099 independent reflections

  • 2199 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.131

  • S = 1.00

  • 3099 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 1.16 (2) 1.38 (2) 2.4720 (16) 154 (2)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

1,3-Diketones are interesting due to their enolic tautomeric forms and their ability to form strong intermolecular or intramolecular hydrogen bonds (Bertolasi et al., 1991; Vila et al., 1991). They are used widely in the chemistry of metallocomplexes (Baskar et al., 2005; Bassett et al., 2004; Jang et al., 2006; Soldatov et al., 2003). The title compound (I) (Fig. 1), is in the enol form stabilized by an intramolecular O-H···O hydrogen bond (see Table 1).

Related literature top

For background information on 1,3-diketones, see: Baskar & Roesky (2005); Bassett et al. (2004); Bertolasi et al. (1991); Jang et al. (2006); Soldatov et al. (2003); Vila et al. (1991).

Experimental top

1-(4-fluorophenyl)ethanone (1.38 g, 0.01 mol), methyl 4-tert-butylbenzoate (1.92 g, 0.01 mol), NaNH2 (0.78 g, 0.02 mol) and dry ether (60 ml) were placed into round bottom flask. The mixture was stirred for 6 h at room temperature under a blanket of nitrogen, acidified with dilute hydrochloric acid, and stirring was continued until all solids dissolved. The ether layer was separated and washed with saturated NaHCO3 solution, dried over anhydrous Na2SO4 and was removed by evaporation. The residual solid was recrystallized from ethanol solution to give the title compound (I) (yield 1.78 g, 59.6%, m.p. 388 K). Crystals suitable for X-ray diffraction were grown by slow evaporation of a CHCl3—EtOH (1:4) solution of the title compound at room temperature.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 to 0.96 Å, and with Uiso(H) = 1.2 Ueq(C). The H atom of the hydroxyl group was located in a difference Fourier map and its position was refined freely, with Uiso(H) = 1.5 Uiso(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a intramolecular hydrogen bond.
3-(4-tert-Butylphenyl)-1-(4-fluorophenyl)-3-hydroxyprop-2-en-1-one top
Crystal data top
C19H19FO2F(000) = 632
Mr = 298.34Dx = 1.251 Mg m3
Monoclinic, P21/nMelting point: 388 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.8349 (12) ÅCell parameters from 3223 reflections
b = 10.0163 (13) Åθ = 2.3–22.9°
c = 16.232 (2) ŵ = 0.09 mm1
β = 97.788 (2)°T = 298 K
V = 1584.3 (3) Å3Block, colorless
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
3099 independent reflections
Radiation source: fine-focus sealed tube2199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.993, Tmax = 0.995k = 1212
12039 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.07P)2]
where P = (Fo2 + 2Fc2)/3
3099 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C19H19FO2V = 1584.3 (3) Å3
Mr = 298.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8349 (12) ŵ = 0.09 mm1
b = 10.0163 (13) ÅT = 298 K
c = 16.232 (2) Å0.20 × 0.10 × 0.10 mm
β = 97.788 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3099 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2199 reflections with I > 2σ(I)
Tmin = 0.993, Tmax = 0.995Rint = 0.074
12039 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.17 e Å3
3099 reflectionsΔρmin = 0.19 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12996 (18)0.09274 (19)0.07276 (10)0.0599 (5)
C20.0803 (2)0.2198 (2)0.08119 (10)0.0666 (5)
H20.05220.25590.13350.080*
C30.07296 (18)0.29335 (17)0.01033 (9)0.0587 (5)
H30.04010.38050.01500.070*
C40.11376 (15)0.23969 (16)0.06796 (9)0.0457 (4)
C50.16498 (16)0.11083 (17)0.07303 (9)0.0545 (4)
H50.19430.07410.12500.065*
C60.17340 (17)0.03602 (18)0.00290 (10)0.0596 (5)
H60.20760.05060.00680.071*
C70.09992 (16)0.32242 (16)0.14225 (9)0.0491 (4)
C80.11727 (16)0.27023 (16)0.22333 (9)0.0499 (4)
H80.14640.18240.23210.060*
C90.09179 (16)0.34703 (16)0.29012 (9)0.0498 (4)
C100.09963 (16)0.29479 (16)0.37555 (9)0.0475 (4)
C110.01481 (18)0.34617 (16)0.42948 (10)0.0561 (4)
H110.04590.41480.41180.067*
C120.01961 (17)0.29659 (17)0.50883 (10)0.0565 (4)
H120.03960.33190.54320.068*
C130.10956 (15)0.19580 (15)0.53959 (9)0.0464 (4)
C140.19521 (17)0.14742 (17)0.48502 (9)0.0557 (4)
H140.25800.08080.50320.067*
C150.19034 (17)0.19472 (17)0.40495 (9)0.0541 (4)
H150.24880.15890.37020.065*
C160.11634 (16)0.14446 (16)0.62880 (9)0.0512 (4)
C170.02548 (19)0.1488 (2)0.65807 (11)0.0744 (6)
H17A0.05440.24000.66140.112*
H17B0.02050.10800.71190.112*
H17C0.09030.10120.61930.112*
C180.2134 (2)0.2360 (2)0.68505 (10)0.0774 (6)
H18A0.30200.23640.66640.116*
H18B0.22210.20390.74120.116*
H18C0.17700.32500.68270.116*
C190.1691 (2)0.00150 (18)0.63681 (12)0.0791 (6)
H19A0.11400.05410.59730.119*
H19B0.16390.03050.69200.119*
H19C0.26280.00100.62620.119*
F10.13561 (14)0.01881 (12)0.14199 (6)0.0933 (4)
O10.06597 (13)0.44469 (12)0.12968 (7)0.0671 (4)
O20.05431 (14)0.47163 (12)0.27994 (8)0.0720 (4)
H2A0.050 (2)0.485 (2)0.2088 (15)0.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0655 (12)0.0679 (12)0.0478 (9)0.0042 (9)0.0136 (8)0.0004 (8)
C20.0872 (14)0.0695 (13)0.0436 (9)0.0131 (10)0.0110 (8)0.0131 (8)
C30.0709 (12)0.0531 (10)0.0526 (10)0.0069 (9)0.0105 (8)0.0105 (8)
C40.0383 (9)0.0509 (10)0.0480 (9)0.0008 (7)0.0060 (6)0.0057 (7)
C50.0546 (10)0.0619 (11)0.0458 (9)0.0075 (8)0.0026 (7)0.0083 (8)
C60.0628 (12)0.0584 (11)0.0574 (10)0.0130 (9)0.0080 (8)0.0037 (8)
C70.0445 (9)0.0480 (10)0.0540 (9)0.0026 (7)0.0035 (7)0.0054 (7)
C80.0547 (10)0.0466 (10)0.0475 (9)0.0040 (8)0.0040 (7)0.0024 (7)
C90.0493 (10)0.0455 (10)0.0525 (9)0.0028 (7)0.0003 (7)0.0013 (7)
C100.0484 (9)0.0456 (9)0.0468 (8)0.0007 (7)0.0004 (7)0.0062 (7)
C110.0625 (11)0.0490 (10)0.0560 (10)0.0152 (8)0.0049 (8)0.0000 (7)
C120.0612 (11)0.0559 (11)0.0537 (10)0.0124 (9)0.0128 (8)0.0052 (8)
C130.0465 (9)0.0443 (9)0.0475 (8)0.0021 (7)0.0028 (7)0.0069 (7)
C140.0547 (10)0.0603 (11)0.0507 (9)0.0163 (8)0.0017 (7)0.0021 (7)
C150.0531 (10)0.0615 (11)0.0480 (9)0.0132 (8)0.0075 (7)0.0049 (7)
C160.0502 (10)0.0554 (10)0.0471 (9)0.0006 (8)0.0029 (7)0.0021 (7)
C170.0699 (13)0.0938 (15)0.0614 (11)0.0013 (11)0.0153 (9)0.0105 (10)
C180.0857 (14)0.0914 (15)0.0515 (10)0.0224 (12)0.0039 (9)0.0023 (9)
C190.1093 (17)0.0651 (13)0.0644 (12)0.0161 (12)0.0167 (11)0.0115 (9)
F10.1407 (12)0.0884 (9)0.0527 (6)0.0260 (7)0.0201 (6)0.0074 (5)
O10.0956 (10)0.0484 (7)0.0566 (7)0.0054 (7)0.0083 (6)0.0085 (5)
O20.1083 (11)0.0459 (7)0.0598 (8)0.0109 (7)0.0044 (7)0.0007 (5)
Geometric parameters (Å, º) top
C1—F11.3532 (19)C11—H110.9300
C1—C21.364 (3)C12—C131.390 (2)
C1—C61.368 (2)C12—H120.9300
C2—C31.376 (2)C13—C141.390 (2)
C2—H20.9300C13—C161.530 (2)
C3—C41.388 (2)C14—C151.378 (2)
C3—H30.9300C14—H140.9300
C4—C51.384 (2)C15—H150.9300
C4—C71.485 (2)C16—C191.523 (2)
C5—C61.375 (2)C16—C181.533 (2)
C5—H50.9300C16—C171.534 (2)
C6—H60.9300C17—H17A0.9600
C7—O11.2784 (19)C17—H17B0.9600
C7—C81.405 (2)C17—H17C0.9600
C8—C91.380 (2)C18—H18A0.9600
C8—H80.9300C18—H18B0.9600
C9—O21.3054 (19)C18—H18C0.9600
C9—C101.474 (2)C19—H19A0.9600
C10—C151.383 (2)C19—H19B0.9600
C10—C111.387 (2)C19—H19C0.9600
C11—C121.375 (2)O2—H2A1.16 (2)
F1—C1—C2118.81 (15)C14—C13—C12115.83 (14)
F1—C1—C6118.39 (16)C14—C13—C16122.26 (14)
C2—C1—C6122.81 (16)C12—C13—C16121.89 (14)
C1—C2—C3118.32 (15)C15—C14—C13122.32 (15)
C1—C2—H2120.8C15—C14—H14118.8
C3—C2—H2120.8C13—C14—H14118.8
C2—C3—C4121.11 (16)C14—C15—C10120.86 (15)
C2—C3—H3119.4C14—C15—H15119.6
C4—C3—H3119.4C10—C15—H15119.6
C5—C4—C3118.25 (14)C19—C16—C13111.57 (14)
C5—C4—C7123.03 (13)C19—C16—C18109.51 (15)
C3—C4—C7118.72 (14)C13—C16—C18107.85 (13)
C6—C5—C4121.43 (14)C19—C16—C17108.31 (15)
C6—C5—H5119.3C13—C16—C17111.03 (13)
C4—C5—H5119.3C18—C16—C17108.51 (15)
C1—C6—C5118.07 (16)C16—C17—H17A109.5
C1—C6—H6121.0C16—C17—H17B109.5
C5—C6—H6121.0H17A—C17—H17B109.5
O1—C7—C8120.13 (14)C16—C17—H17C109.5
O1—C7—C4117.12 (13)H17A—C17—H17C109.5
C8—C7—C4122.71 (14)H17B—C17—H17C109.5
C9—C8—C7121.11 (15)C16—C18—H18A109.5
C9—C8—H8119.4C16—C18—H18B109.5
C7—C8—H8119.4H18A—C18—H18B109.5
O2—C9—C8120.78 (14)C16—C18—H18C109.5
O2—C9—C10115.86 (14)H18A—C18—H18C109.5
C8—C9—C10123.32 (15)H18B—C18—H18C109.5
C15—C10—C11117.77 (15)C16—C19—H19A109.5
C15—C10—C9122.06 (14)C16—C19—H19B109.5
C11—C10—C9120.17 (15)H19A—C19—H19B109.5
C12—C11—C10120.64 (15)C16—C19—H19C109.5
C12—C11—H11119.7H19A—C19—H19C109.5
C10—C11—H11119.7H19B—C19—H19C109.5
C11—C12—C13122.56 (15)C7—O1—H2A101.2 (10)
C11—C12—H12118.7C7—O1—H2A101.2 (10)
C13—C12—H12118.7C9—O2—H2A102.1 (11)
F1—C1—C2—C3178.96 (17)O2—C9—C10—C1129.4 (2)
C6—C1—C2—C30.5 (3)C8—C9—C10—C11148.40 (16)
C1—C2—C3—C40.5 (3)C15—C10—C11—C121.3 (3)
C2—C3—C4—C51.3 (3)C9—C10—C11—C12178.87 (15)
C2—C3—C4—C7178.35 (16)C10—C11—C12—C131.2 (3)
C3—C4—C5—C61.2 (2)C11—C12—C13—C140.0 (3)
C7—C4—C5—C6178.49 (15)C11—C12—C13—C16178.28 (15)
F1—C1—C6—C5178.81 (15)C12—C13—C14—C150.9 (3)
C2—C1—C6—C50.6 (3)C16—C13—C14—C15179.20 (15)
C4—C5—C6—C10.2 (3)C13—C14—C15—C100.7 (3)
C5—C4—C7—O1172.32 (15)C11—C10—C15—C140.4 (3)
C3—C4—C7—O18.0 (2)C9—C10—C15—C14179.79 (15)
C5—C4—C7—C810.2 (2)C14—C13—C16—C1927.3 (2)
C3—C4—C7—C8169.45 (15)C12—C13—C16—C19154.50 (16)
O1—C7—C8—C93.2 (2)C14—C13—C16—C1893.01 (19)
C4—C7—C8—C9174.20 (14)C12—C13—C16—C1885.19 (19)
C7—C8—C9—O21.8 (2)C14—C13—C16—C17148.23 (16)
C7—C8—C9—C10175.89 (14)C12—C13—C16—C1733.6 (2)
O2—C9—C10—C15150.37 (16)C8—C7—O1—H2A3.3 (9)
C8—C9—C10—C1531.8 (2)C4—C7—O1—H2A174.2 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O11.16 (2)1.38 (2)2.4720 (16)154 (2)

Experimental details

Crystal data
Chemical formulaC19H19FO2
Mr298.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.8349 (12), 10.0163 (13), 16.232 (2)
β (°) 97.788 (2)
V3)1584.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.993, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
12039, 3099, 2199
Rint0.074
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.131, 1.00
No. of reflections3099
No. of parameters205
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O11.16 (2)1.38 (2)2.4720 (16)154 (2)
 

Acknowledgements

The authors are grateful to Hubei Normal University for financial support.

References

First citationBaskar, V. & Roesky, P. W. (2005). Z. Anorg. Allg. Chem. 631, 2782–2785.  Web of Science CSD CrossRef CAS Google Scholar
First citationBassett, A. P., Magennis, S. W., Glover, P. B., Lewis, D. J., Spencer, N., Parsons, S., Williams, R. M., Cola, L. D. & Pikramenou, Z. (2004). J. Am. Chem. Soc. 126, 9413–9424.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBertolasi, V., Cilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917–4925.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJang, H., Shin, C. H., Jung, B. J., Kim, D. H., Shim, H. K. & Do, Y. (2006). Eur. J. Inorg. Chem. 4, 718–725.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoldatov, D. V., Zanina, A. S., Enright, G. D., Ratcliffe, C. I. & Ripmeester, J. A. (2003). Cryst. Growth & Des. 3, 1005–1013.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVila, A. J., Lagier, C. M. & Olivieri, A. C. (1991). J. Phys. Chem. 95, 5069–5073.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds