organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o194-o195

2,2′-Di­hydroxy-3,3′-[(1E,1′E)-hydrazine-1,2-diylidenedi­methyl­idyne]di­benzoic acid N,N-di­methylformamide disolvate

aCollege of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, People's Republic of China
*Correspondence e-mail: chengyong2008@gmail.com

(Received 7 December 2008; accepted 18 December 2008; online 24 December 2008)

The title compound, C16H12N2O6·2C3H7NO, lies across a crystallographic inversion centre which is situated at the midpoint of the central N—N bond. The substitution at the C=N bond adopts a trans configuration and it is essentially coplanar with the benzene ring [N—C—C—C torsion angles = −173.9 (4) and 6.4 (6)°]. All torsion angles involving non-H atoms are close to 180°. Intra­molecular O—H⋯O and weak C—H⋯O hydrogen bonds form S(6) and S(5) ring motifs, respectively, while inter­molecular O—H⋯O and weak C—H⋯O hydrogen bonds connect the Schiff base mol­ecule to solvent dimethyl­formamide mol­ecules.

Related literature

For information on Schiff base ligands, their complexes and their applications, see, for example: Pal et al. (2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]); Hou et al. (2001[Hou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. J. (2001). Phys. Chem. B. 105, 7042-7048.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the structures and properties of related azine organic and metallorganic compounds, see, for example: Dreuw et al. (2005[Dreuw, A., Plötner, J., Lorenz, L., Wachtveitl, J., Djanhan, J. E., Brüning, J., Metz, T., Bolte, M. & Schmidt, M. U. (2005). Angew. Chem. Int. Ed. 44, 7783-7786.]); Chattopadhyay et al. (2008[Chattopadhyay, B., Basu, S., Ghosh, S., Helliwell, M. & Mukherjee, M. (2008). Acta Cryst. E64, o866.]); Cucos et al. (2006[Cucos, P., Pascu, M., Sessoli, R., Avarvari, N., Pointillart, F. & Andruh, M. (2006). Inorg. Chem. 45, 7035-7037.]); Fu (2007[Fu, Z.-W. (2007). Acta Cryst. E63, o2993.]); Mijanuddina et al. (2004[Mijanuddin, M., Sheldrick, W. S., Mayer-Figge, H., Ali, M. & Chattopadhyay, N. (2004). J. Mol. Struct., 693, 161-165.]); Sreerama et al. (2007[Sreerama, S. G., Mukhopadhyay, A. & Pal, S. (2007). Polyhedron, 26, 4101-4106.]); Butcher et al. (2007[Butcher, R. J., Bendre, R. S. & Kuwar, A. S. (2007). Acta Cryst. E63, o3360.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O6·2C3H7NO

  • Mr = 474.47

  • Monoclinic, P 21 /c

  • a = 5.9136 (12) Å

  • b = 10.837 (2) Å

  • c = 18.991 (4) Å

  • β = 98.96 (3)°

  • V = 1202.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.36 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.984

  • 7616 measured reflections

  • 1978 independent reflections

  • 679 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.149

  • S = 1.01

  • 1978 reflections

  • 159 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Selected torsion angles (°)

C7—C1—C2—C3 179.5 (4)
C3—C4—C5—C8 179.5 (4)
C4—C5—C6—O3 −179.5 (4)
C8—C5—C6—C1 −180.0 (4)
C7—C1—C6—C5 −179.2 (4)
C6—C1—C7—O2 174.1 (4)
N1i—N1—C8—C5 −179.4 (4)
C6—C5—C8—N1 −173.9 (4)
C11—N2—C9—O4 178.3 (5)
Symmetry code: (i) -x+2, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1ii 0.93 2.59 3.261 (6) 130
C2—H2A⋯O2 0.93 2.43 2.742 (6) 99
O3—H3⋯O1 0.82 1.85 2.568 (4) 146
O2—H2⋯O4iii 0.82 1.76 2.557 (4) 162
Symmetry codes: (ii) x+1, y, z; (iii) x-1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry. Schiff bases have been used widely as ligands in the formation of transition metal complexes. There has been growing interest in Schiff base ligands, mainly because of their wide application in the field of biochemistry, synthesis, and catalysis (Pal et al., 2005; Hou et al., 2001; Ren et al., 2002).

Herein, we report the synthesis and crystal structure of the Schiff-base compound, (I). The molecule lies across a crystallographic inversion centre which is situated at the midpoint of the N—N (1.393 (6) Å) bond. The molecular structure of (I) is shown in Fig.1. All bond lengths are within in normal ranges (Allen et al., 1987). The N1—C8 [1.281 (5) Å] and N1—N1i [1.393 (6) Å] (symmetry code: (i) -x+2, -y+2, -z+1) distances indicate these correspond to double and single bonds, respectively. The torsion angles indicate that the molecule is essentially planar with the C=N bond adjacent to the benzene rings adopting a trans configuration with resect to its substitution. Intramolecular O—H···O and C—H···O hydrogen bonds form S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995). The Schiff-base molecule and solvent DMF molecules are connected by intermolecular hydrogen bonds (Fig.1 and Table. 2). Some crystal structures which are closely related to the title compound have already been studied (Chattopadhyay et al.,2008; Cucos et al., 2006; Fu, 2007; Mijanuddina et al., 2004; Dreuw et al., 2005; Sreerama et al., 2007).

Related literature top

For information on Schiff base ligands, their complexes and their applications, see, for example: Pal et al. (2005); Hou et al. (2001); Ren et al. (2002). For bond-length data, see: Allen et al. (1987). For related azine organic, metallorganic compound structures and properities, see, for example: Dreuw et al. (2005); Chattopadhyay et al. (2008); Cucos et al. (2006); Fu et al. (2007); Mijanuddina et al. (2004); Sreerama et al. (2007). For related literature, see: Bernstein et al. (1995); Butcher et al. (2007).

Experimental top

Reagents and solvents used were of commercially available quality. To a stirred solution of 3-formylsalicylic acid (0.332 g, 2 mmol) in absolute methanol (10 ml) was added dropwise hydrazine hydrate (0.050 g, 1 mmol). After a few minutes, an orange precipitate appeared, which was isolated by filtration, washed with methanol, and dried in air. Crystals of (I) suitable for X-ray diffraction were obtained by recrystallized the crude product from DMF solution.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids at the 30% probability level. Hydrogen bonds show as dashed lines.
2,2'-Dihydroxy-3,3'-[(1E,1'E)-hydrazine-1,2- diylidenedimethylidyne]dibenzoic acid N,N-dimethylformamide disolvate top
Crystal data top
C16H12N2O6·2C3H7NOF(000) = 500
Mr = 474.47Dx = 1.311 Mg m3
Monoclinic, P21/cMelting point: 443 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.9136 (12) ÅCell parameters from 812 reflections
b = 10.837 (2) Åθ = 2.1–15.4°
c = 18.991 (4) ŵ = 0.10 mm1
β = 98.96 (3)°T = 295 K
V = 1202.2 (4) Å3Needle, red
Z = 20.36 × 0.20 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1978 independent reflections
Radiation source: fine-focus sealed tube679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 67
Tmin = 0.965, Tmax = 0.984k = 1212
7616 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.036P)2 + 0.022P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1978 reflectionsΔρmax = 0.14 e Å3
159 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (4)
Crystal data top
C16H12N2O6·2C3H7NOV = 1202.2 (4) Å3
Mr = 474.47Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.9136 (12) ŵ = 0.10 mm1
b = 10.837 (2) ÅT = 295 K
c = 18.991 (4) Å0.36 × 0.20 × 0.16 mm
β = 98.96 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1978 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
679 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.984Rint = 0.082
7616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.01Δρmax = 0.14 e Å3
1978 reflectionsΔρmin = 0.14 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9469 (6)0.9471 (3)0.51035 (19)0.0850 (12)
N20.2954 (7)0.6509 (3)0.23059 (19)0.0830 (11)
O10.0194 (5)0.7647 (3)0.34383 (15)0.0925 (10)
O20.0718 (5)0.5919 (3)0.40230 (16)0.0978 (10)
H20.19830.59480.37750.147*
O30.3501 (5)0.8896 (3)0.37878 (14)0.0913 (10)
H30.22930.86970.35410.137*
O40.5660 (5)0.5621 (3)0.31107 (17)0.1024 (11)
C10.2520 (8)0.7119 (4)0.4437 (2)0.0735 (12)
C20.3105 (8)0.6335 (4)0.5012 (2)0.0901 (14)
H2A0.21510.56780.50790.108*
C30.5105 (10)0.6525 (5)0.5488 (2)0.1046 (16)
H3A0.54910.60010.58770.126*
C40.6512 (8)0.7496 (5)0.5380 (2)0.0977 (16)
H40.78580.76140.56980.117*
C50.5984 (8)0.8308 (4)0.4808 (2)0.0753 (13)
C60.3970 (8)0.8102 (4)0.4342 (2)0.0717 (12)
C70.0427 (8)0.6924 (5)0.3928 (3)0.0782 (13)
C80.7514 (9)0.9333 (4)0.4714 (2)0.0829 (13)
H80.70500.99090.43570.099*
C90.4849 (9)0.6507 (5)0.2750 (3)0.0863 (14)
H90.56740.72400.28010.104*
C100.1512 (9)0.5403 (4)0.2220 (2)0.1212 (18)
H10A0.21580.48110.19330.182*
H10B0.00010.56220.19930.182*
H10C0.14330.50520.26800.182*
C110.2066 (9)0.7591 (5)0.1912 (3)0.1217 (18)
H11A0.30800.82740.20390.183*
H11B0.05790.77840.20240.183*
H11C0.19490.74320.14100.183*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.066 (3)0.093 (3)0.091 (3)0.006 (2)0.000 (2)0.007 (2)
N20.079 (3)0.082 (3)0.085 (3)0.017 (2)0.005 (2)0.005 (2)
O10.093 (2)0.093 (2)0.084 (2)0.0066 (18)0.0070 (18)0.0125 (17)
O20.089 (2)0.093 (2)0.107 (3)0.003 (2)0.0012 (19)0.0162 (19)
O30.096 (2)0.094 (2)0.079 (2)0.0056 (18)0.0022 (17)0.0103 (17)
O40.098 (3)0.085 (2)0.116 (3)0.001 (2)0.010 (2)0.0036 (19)
C10.071 (3)0.078 (3)0.072 (3)0.009 (3)0.014 (3)0.000 (3)
C20.092 (4)0.098 (3)0.080 (3)0.001 (3)0.015 (3)0.008 (3)
C30.104 (4)0.124 (4)0.080 (3)0.018 (4)0.003 (3)0.022 (3)
C40.085 (4)0.119 (4)0.082 (4)0.009 (3)0.009 (3)0.005 (3)
C50.083 (3)0.077 (3)0.063 (3)0.021 (3)0.002 (3)0.008 (3)
C60.078 (3)0.075 (3)0.062 (3)0.021 (3)0.011 (3)0.001 (2)
C70.075 (3)0.069 (3)0.090 (4)0.013 (3)0.012 (3)0.006 (3)
C80.089 (4)0.079 (3)0.082 (3)0.020 (3)0.018 (3)0.009 (2)
C90.076 (4)0.090 (4)0.094 (4)0.012 (3)0.014 (3)0.007 (3)
C100.126 (5)0.116 (4)0.123 (4)0.042 (4)0.023 (4)0.037 (3)
C110.118 (4)0.118 (4)0.120 (4)0.009 (3)0.008 (3)0.023 (3)
Geometric parameters (Å, º) top
N1—C81.281 (5)C2—H2A0.9300
N1—N1i1.393 (6)C3—C41.377 (6)
N2—C91.293 (5)C3—H3A0.9300
N2—C111.445 (5)C4—C51.395 (5)
N2—C101.465 (5)C4—H40.9300
O1—C71.228 (5)C5—C61.387 (5)
O2—C71.310 (5)C5—C81.462 (6)
O2—H20.8200C8—H80.9300
O3—C61.354 (4)C9—H90.9300
O3—H30.8200C10—H10A0.9600
O4—C91.232 (5)C10—H10B0.9600
C1—C21.384 (5)C10—H10C0.9600
C1—C61.397 (5)C11—H11A0.9600
C1—C71.462 (5)C11—H11B0.9600
C2—C31.388 (6)C11—H11C0.9600
C8—N1—N1i109.8 (5)C5—C6—C1121.6 (4)
C9—N2—C11123.2 (4)O1—C7—O2122.3 (4)
C9—N2—C10120.1 (4)O1—C7—C1122.1 (5)
C11—N2—C10116.6 (4)O2—C7—C1115.6 (4)
C7—O2—H2109.5N1—C8—C5122.5 (4)
C6—O3—H3109.5N1—C8—H8118.7
C2—C1—C6119.1 (4)C5—C8—H8118.7
C2—C1—C7121.0 (5)O4—C9—N2125.9 (5)
C6—C1—C7119.9 (4)O4—C9—H9117.0
C1—C2—C3120.4 (5)N2—C9—H9117.0
C1—C2—H2A119.8N2—C10—H10A109.5
C3—C2—H2A119.8N2—C10—H10B109.5
C4—C3—C2119.3 (4)H10A—C10—H10B109.5
C4—C3—H3A120.4N2—C10—H10C109.5
C2—C3—H3A120.4H10A—C10—H10C109.5
C3—C4—C5122.1 (5)H10B—C10—H10C109.5
C3—C4—H4118.9N2—C11—H11A109.5
C5—C4—H4118.9N2—C11—H11B109.5
C6—C5—C4117.5 (5)H11A—C11—H11B109.5
C6—C5—C8122.0 (4)N2—C11—H11C109.5
C4—C5—C8120.5 (4)H11A—C11—H11C109.5
O3—C6—C5116.5 (5)H11B—C11—H11C109.5
O3—C6—C1121.9 (4)
C6—C1—C2—C30.1 (6)C2—C1—C6—C50.3 (6)
C7—C1—C2—C3179.5 (4)C7—C1—C6—C5179.2 (4)
C1—C2—C3—C40.5 (7)C2—C1—C7—O1175.7 (4)
C2—C3—C4—C50.6 (8)C6—C1—C7—O14.9 (6)
C3—C4—C5—C60.3 (7)C2—C1—C7—O25.4 (6)
C3—C4—C5—C8179.5 (4)C6—C1—C7—O2174.1 (4)
C4—C5—C6—O3179.5 (4)N1i—N1—C8—C5179.4 (4)
C8—C5—C6—O30.7 (6)C6—C5—C8—N1173.9 (4)
C4—C5—C6—C10.2 (6)C4—C5—C8—N16.4 (6)
C8—C5—C6—C1180.0 (4)C11—N2—C9—O4178.3 (5)
C2—C1—C6—O3179.5 (4)C10—N2—C9—O42.7 (7)
C7—C1—C6—O30.1 (6)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1ii0.932.593.261 (6)130
C2—H2A···O20.932.432.742 (6)99
O3—H3···O10.821.852.568 (4)146
O2—H2···O4iii0.821.762.557 (4)162
Symmetry codes: (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H12N2O6·2C3H7NO
Mr474.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)5.9136 (12), 10.837 (2), 18.991 (4)
β (°) 98.96 (3)
V3)1202.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.36 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.965, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7616, 1978, 679
Rint0.082
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.149, 1.01
No. of reflections1978
No. of parameters159
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected torsion angles (º) top
C7—C1—C2—C3179.5 (4)C6—C1—C7—O2174.1 (4)
C3—C4—C5—C8179.5 (4)N1i—N1—C8—C5179.4 (4)
C4—C5—C6—O3179.5 (4)C6—C5—C8—N1173.9 (4)
C8—C5—C6—C1180.0 (4)C11—N2—C9—O4178.3 (5)
C7—C1—C6—C5179.2 (4)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1ii0.932.593.261 (6)129.5
C2—H2A···O20.932.432.742 (6)99.4
O3—H3···O10.821.852.568 (4)146.2
O2—H2···O4iii0.821.762.557 (4)161.9
Symmetry codes: (ii) x+1, y, z; (iii) x1, y, z.
 

Acknowledgements

This work was supported by the Key Laboratory for Research and Development of Natural Drugs of Jiangxi Province. The data were collected and the structure solved and refined at the Department of Chemistry and Biology, Qinzhou University, Qinzhou, Guangxi 535000, People's Republic of China.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Bendre, R. S. & Kuwar, A. S. (2007). Acta Cryst. E63, o3360.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChattopadhyay, B., Basu, S., Ghosh, S., Helliwell, M. & Mukherjee, M. (2008). Acta Cryst. E64, o866.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCucos, P., Pascu, M., Sessoli, R., Avarvari, N., Pointillart, F. & Andruh, M. (2006). Inorg. Chem. 45, 7035–7037.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDreuw, A., Plötner, J., Lorenz, L., Wachtveitl, J., Djanhan, J. E., Brüning, J., Metz, T., Bolte, M. & Schmidt, M. U. (2005). Angew. Chem. Int. Ed. 44, 7783–7786.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, Z.-W. (2007). Acta Cryst. E63, o2993.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. J. (2001). Phys. Chem. B. 105, 7042–7048.  CrossRef CAS Google Scholar
First citationMijanuddin, M., Sheldrick, W. S., Mayer-Figge, H., Ali, M. & Chattopadhyay, N. (2004). J. Mol. Struct., 693, 161–165.  Web of Science CSD CrossRef CAS Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreerama, S. G., Mukhopadhyay, A. & Pal, S. (2007). Polyhedron, 26, 4101–4106.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o194-o195
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds