organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 5-bromo-6-methyl­picolinate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, No. 625 Geguan Road, Dachang, Nanjing 210048, People's Republic of China, bSynergetica-Changzhou, Ltd., Chunjiang Town, Xinbei District, Changzhou City 213033, Jiangsu Province, People's Republic of China, and cSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, People's Republic of China
*Correspondence e-mail: adsony05@163.com

(Received 8 December 2008; accepted 10 December 2008; online 17 December 2008)

The title compound, C8H8BrNO2, does not show any significant inter­molecular ππ or C—H⋯π inter­actions in the crystal packing except for one weak Br⋯Br [3.715 (1) Å] inter­action.

Related literature

The title compound is an important inter­mediate for the construction of novel supported PyOX ligands, see: Oila et al. (2005[Oila, M. J., Tois, J. E. & Koskinen, A. M. P. (2005). Tetrahedron, 61, 10748-10756.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8BrNO2

  • Mr = 230.06

  • Monoclinic, P 21 /c

  • a = 18.518 (4) Å

  • b = 4.1040 (8) Å

  • c = 12.442 (3) Å

  • β = 109.52 (3)°

  • V = 891.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.57 mm−1

  • T = 293 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.462, Tmax = 0.658

  • 1602 measured reflections

  • 1602 independent reflections

  • 975 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.066

  • S = 1.75

  • 1602 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is one of important intermediates for construction of novel supported PyOX-ligands (Oila et al., 2005). Here we report the crystal structure of the title compound, methyl 5-bromo-6-methylpicolinate (Fig. 1).

In the title compound, the bond lengths and angles are within normal ranges (Allen et al., 1987). The crystal structure is stabilized by a weak Br···Bri interaction at 3.715 (1) Å (Fig. 2; symmetry code as in Fig. 2).

Related literature top

The title compound is an important intermediates for the construction of novel supported PyOX ligands, see: Oila et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Oila et al., 2005) with some modification. The crystals were obtained by dissolving I (0.2 g) in methanol (50 ml) and evaporating the solvent slowly at room temperature for about 3 d.

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A drawing of the title molecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Br···Br interaction in the title compound. [Symmetry code: (i) -x+1, y+1/2, -z+1/2.]
Methyl 5-bromo-6-methylpicolinate top
Crystal data top
C8H8BrNO2F(000) = 456
Mr = 230.06Dx = 1.715 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 18.518 (4) Åθ = 10–14°
b = 4.1040 (8) ŵ = 4.57 mm1
c = 12.442 (3) ÅT = 293 K
β = 109.52 (3)°Block, colorless
V = 891.2 (4) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
975 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 1.2°
ω/2θ scansh = 2220
Absorption correction: ψ scan
(North et al., 1968)
k = 04
Tmin = 0.462, Tmax = 0.658l = 014
1602 measured reflections3 standard reflections every 200 reflections
1602 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: difference Fourier map
wR(F2) = 0.066H-atom parameters constrained
S = 1.75 w = 1/[σ2(Fo2)]
1602 reflections(Δ/σ)max < 0.000
110 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C8H8BrNO2V = 891.2 (4) Å3
Mr = 230.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.518 (4) ŵ = 4.57 mm1
b = 4.1040 (8) ÅT = 293 K
c = 12.442 (3) Å0.20 × 0.10 × 0.10 mm
β = 109.52 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
975 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.462, Tmax = 0.6583 standard reflections every 200 reflections
1602 measured reflections intensity decay: 1%
1602 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.75Δρmax = 0.53 e Å3
1602 reflectionsΔρmin = 0.61 e Å3
110 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.41815 (4)0.6507 (2)0.25731 (6)0.0546 (3)
O10.0882 (2)0.1451 (13)0.2125 (3)0.0691 (16)
O20.1349 (2)0.0435 (11)0.3986 (4)0.0533 (15)
N0.2635 (3)0.2009 (15)0.3797 (4)0.0450 (17)
C10.3893 (3)0.4149 (17)0.4811 (4)0.067 (2)
H1A0.37070.37870.54340.101*
H1B0.40590.63700.48220.101*
H1C0.43170.27170.48820.101*
C20.3260 (3)0.3477 (18)0.3698 (5)0.0344 (16)
C30.3290 (3)0.4444 (16)0.2646 (5)0.039 (2)
C40.2680 (3)0.3789 (19)0.1651 (5)0.059 (2)
H4A0.27020.43580.09390.071*
C50.2053 (3)0.2298 (18)0.1755 (5)0.050 (2)
H5A0.16320.18660.11090.060*
C60.2038 (3)0.1425 (19)0.2814 (5)0.0426 (18)
C70.1372 (4)0.0335 (18)0.2958 (6)0.050 (2)
C80.0676 (3)0.1896 (19)0.4127 (5)0.070 (2)
H8A0.07240.18750.49200.104*
H8B0.06270.41040.38570.104*
H8C0.02300.06790.36980.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0482 (4)0.0590 (5)0.0589 (5)0.0020 (6)0.0211 (3)0.0028 (6)
O10.048 (3)0.092 (4)0.055 (4)0.011 (4)0.001 (3)0.013 (4)
O20.043 (3)0.070 (4)0.046 (3)0.007 (3)0.013 (2)0.002 (3)
N0.029 (3)0.065 (5)0.033 (3)0.006 (4)0.000 (3)0.004 (4)
C10.056 (4)0.087 (7)0.043 (4)0.027 (5)0.004 (4)0.012 (5)
C20.026 (4)0.031 (4)0.035 (4)0.003 (4)0.004 (3)0.004 (5)
C30.034 (4)0.045 (6)0.040 (4)0.002 (4)0.014 (4)0.009 (4)
C40.049 (4)0.088 (7)0.033 (4)0.004 (6)0.005 (4)0.031 (5)
C50.038 (4)0.076 (7)0.029 (4)0.001 (4)0.002 (3)0.002 (4)
C60.025 (4)0.060 (5)0.042 (4)0.004 (5)0.011 (3)0.001 (5)
C70.037 (5)0.060 (6)0.043 (5)0.004 (4)0.000 (4)0.010 (5)
C80.051 (4)0.079 (7)0.089 (5)0.011 (5)0.037 (4)0.010 (6)
Geometric parameters (Å, º) top
Br—Bri3.715 (1)C2—C31.387 (6)
Br—C31.884 (5)C3—C41.396 (6)
O1—C71.218 (6)C4—C51.356 (7)
O2—C71.294 (6)C4—H4A0.9300
O2—C81.446 (6)C5—C61.375 (7)
N—C21.347 (6)C5—H5A0.9300
N—C61.368 (6)C6—C71.491 (8)
C1—C21.510 (6)C8—H8A0.9600
C1—H1A0.9600C8—H8B0.9600
C1—H1B0.9600C8—H8C0.9600
C1—H1C0.9600
C7—O2—C8116.6 (5)C3—C4—H4A121.0
C2—N—C6117.3 (5)C4—C5—C6120.0 (6)
C2—C1—H1A109.5C4—C5—H5A120.0
C2—C1—H1B109.5C6—C5—H5A120.0
H1A—C1—H1B109.5N—C6—C5122.9 (6)
C2—C1—H1C109.5N—C6—C7115.5 (6)
H1A—C1—H1C109.5C5—C6—C7121.6 (6)
H1B—C1—H1C109.5O1—C7—O2124.6 (7)
N—C2—C3121.4 (5)O1—C7—C6119.4 (7)
N—C2—C1115.2 (5)O2—C7—C6115.9 (6)
C3—C2—C1123.3 (6)O2—C8—H8A109.5
C4—C3—C2120.4 (5)O2—C8—H8B109.5
C4—C3—Br120.5 (5)H8A—C8—H8B109.5
C2—C3—Br119.1 (5)O2—C8—H8C109.5
C5—C4—C3117.9 (6)H8A—C8—H8C109.5
C5—C4—H4A121.0H8B—C8—H8C109.5
C6—N—C2—C31.8 (10)C2—N—C6—C7177.4 (6)
C6—N—C2—C1178.4 (6)C4—C5—C6—N0.4 (11)
N—C2—C3—C42.7 (11)C4—C5—C6—C7177.5 (7)
C1—C2—C3—C4179.0 (6)C8—O2—C7—O12.1 (11)
N—C2—C3—Br179.6 (5)C8—O2—C7—C6175.0 (6)
C1—C2—C3—Br3.3 (9)N—C6—C7—O1167.1 (7)
C2—C3—C4—C52.3 (11)C5—C6—C7—O111.0 (11)
Br—C3—C4—C5180.0 (5)N—C6—C7—O215.6 (9)
C3—C4—C5—C61.2 (11)C5—C6—C7—O2166.3 (7)
C2—N—C6—C50.6 (10)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H8BrNO2
Mr230.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.518 (4), 4.1040 (8), 12.442 (3)
β (°) 109.52 (3)
V3)891.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.57
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.462, 0.658
No. of measured, independent and
observed [I > 2σ(I)] reflections
1602, 1602, 975
Rint0.000
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.066, 1.75
No. of reflections1602
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.61

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOila, M. J., Tois, J. E. & Koskinen, A. M. P. (2005). Tetrahedron, 61, 10748–10756.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds