metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua-μ2-isonicotinato-μ2-oxalato-terbium(III)]

aSchool of Chemistry and the Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zhqfang77@yahoo.com.cn

(Received 21 October 2008; accepted 15 December 2008; online 20 December 2008)

In the crystal structure of the title complex, [Tb(C6H4NO2)(C2O4)(H2O)2]n, the TbIII ion is coordinated by two O atoms from two isonicotinate (inic) anions, four O atoms of two oxalate anions, and two water mol­ecules, displaying a distorted square-antiprismatic geometry. The TbIII ion, the inic anion and the water mol­ecules occupy general positions. One of the two crystallographically independent oxalate anions is located on a center of inversion, whereas the second is located on the twofold rotation axis. The carboxyl­ate groups of the inic and oxalate anions link the terbium metal centres into layers. These layers are connected by O—H⋯O and N—H⋯O hydrogen bonding into a three-dimensional network.

Related literature

For background, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Rizk et al. (2005[Rizk, A. T., Kilner, C. A. & Halcrow, M. A. (2005). CrystEngComm, 7, 359-362.]). An independent determination of this structure is reported in the preceeding paper, see: Song et al. (2009[Song, W.-D., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m117.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb(C6H4NO2)(C2O4)(H2O)2]

  • Mr = 405.07

  • Monoclinic, C 2/c

  • a = 17.7919 (18) Å

  • b = 9.9259 (10) Å

  • c = 12.9670 (13) Å

  • β = 112.4140 (10)°

  • V = 2117.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.72 mm−1

  • T = 296 (2) K

  • 0.23 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.241, Tmax = 0.272

  • 5243 measured reflections

  • 1907 independent reflections

  • 1674 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.063

  • S = 1.01

  • 1907 reflections

  • 163 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.40 e Å−3

  • Δρmin = −1.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O3i 0.84 2.22 2.992 (5) 153
O2W—H4W⋯O1Wii 0.84 2.19 3.003 (5) 163
O1W—H1W⋯N1iii 0.84 1.83 2.661 (5) 167
O2W—H3W⋯O6iv 0.84 2.01 2.836 (5) 172
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) -x+1, -y, -z+1; (iv) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design, synthesis, characterization and properties of coordination networks formed by functionalized organic molecules or anionas as bridges between metal centers are of great interest(Rizk et al., 2005; Eddaoudi et al., 2001). As a building block, isonicotinic acid and oxalic acid are excellent candidates for the construction of such compounds. In our ongoing investigations in this field the title compound was prepared and structurally characterized.

In the crystal structure of the title compound each TbIII centre is coordinated by six oxygen atoms from two symmetry related inic anions, two crystallographically independent oxalate anions and two crystallographically independent water molecules within a distorted bicapped trigonal prismatic geometry (Fig. 1) . The TbIII ions are linked by the inic and oxalate anions into layers, which are parallel to the b-c-plane (Fig. 2). Tb···Tb separations amount to 6.177 (4) and 5.047 (5) Å, respectively. These layers are connected via O—H···O and N—H···O hydrogen bonding between the water H atoms and the inic and one of the two crystallographically independent oxalate anions into three-dimensional network (Table 1).

Related literature top

For background, see: Eddaoudi et al. (2001); Rizk et al. (2005). An independent determination of this structure is reported in the preceeding paper, see: Song et al. (2009).

Experimental top

A mixture of Tb4O7 (0.189 g; 0.25 mmol), isonicotinic acid (0.135 g; 1.5 mmol), oxalic acid(0.135 g; 1.5 mmol), water (10 mL) and HNO3 (0.385 mmol; 0.92g/ml) were stirred for 20 min and then sealed in a 20 mL Teflon-lined stainless-steel autoclave. The autoclave was heated to 433K for 3 days, and then cooled to room temperature at 5 K h-1. By this procedure colorless block-like crystals of the title compound were obtained.

Refinement top

The Water H atoms were located in difference Fourier maps, their bond lengths were set to ideal values of O–H = 0.84 and finally they were refined isotropic using a riding model with Uiso(H) = 1.5 Ueq(O). C-H H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probabbility level. Symmetry codes: (i)1.5-x, 0.5-y, 1-z; (ii)1.5-x, -0.5-y, 1-z; (iii)2-x, y, 1.5-z;
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the c-axis.
Poly[diaqua-µ2-isonicotinato-µ2-oxalato-terbium(III)] top
Crystal data top
[Tb(C6H4NO2)(C2O4)(H2O)2]F(000) = 1536
Mr = 405.07Dx = 2.542 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.7919 (18) ÅCell parameters from 2410 reflections
b = 9.9259 (10) Åθ = 2.4–27.7°
c = 12.9670 (13) ŵ = 6.72 mm1
β = 112.414 (1)°T = 296 K
V = 2117.0 (4) Å3Block, colourless
Z = 80.23 × 0.22 × 0.20 mm
Data collection top
Bruker APEXII area-detector
diffractometer
1674 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
ϕ and ω scansθmax = 25.2°, θmin = 2.4°
Absorption correction: multi-scan
(APEX2; Bruker, 2004)
h = 2120
Tmin = 0.241, Tmax = 0.272k = 511
5243 measured reflectionsl = 1515
1907 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0363P)2]
where P = (Fo2 + 2Fc2)/3
1907 reflections(Δ/σ)max = 0.002
163 parametersΔρmax = 1.40 e Å3
6 restraintsΔρmin = 1.31 e Å3
Crystal data top
[Tb(C6H4NO2)(C2O4)(H2O)2]V = 2117.0 (4) Å3
Mr = 405.07Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.7919 (18) ŵ = 6.72 mm1
b = 9.9259 (10) ÅT = 296 K
c = 12.9670 (13) Å0.23 × 0.22 × 0.20 mm
β = 112.414 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
1907 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2004)
1674 reflections with I > 2σ(I)
Tmin = 0.241, Tmax = 0.272Rint = 0.031
5243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0256 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.01Δρmax = 1.40 e Å3
1907 reflectionsΔρmin = 1.31 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.824056 (12)0.03238 (2)0.574780 (18)0.01553 (10)
O50.9618 (2)0.0185 (4)0.6050 (3)0.0289 (9)
O20.6877 (2)0.0558 (4)0.4672 (3)0.0326 (9)
O30.8029 (2)0.1491 (3)0.4403 (3)0.0239 (8)
C81.0149 (3)0.0110 (5)0.7019 (4)0.0192 (11)
O61.0905 (2)0.0055 (4)0.7291 (3)0.0272 (9)
C10.6278 (3)0.1294 (5)0.4198 (4)0.0215 (11)
C20.5442 (3)0.0692 (5)0.3902 (4)0.0172 (10)
C30.4756 (3)0.1501 (6)0.3627 (4)0.0264 (12)
H30.48000.24340.36180.032*
C60.5336 (3)0.0690 (5)0.3874 (4)0.0241 (11)
H60.57810.12630.40500.029*
C40.4010 (3)0.0890 (6)0.3366 (4)0.0315 (13)
H40.35560.14380.32060.038*
C50.4563 (3)0.1211 (5)0.3584 (5)0.0314 (13)
H50.45000.21420.35640.038*
N10.3903 (3)0.0438 (5)0.3330 (4)0.0309 (11)
C70.7582 (3)0.2447 (5)0.4457 (4)0.0201 (11)
O40.7261 (2)0.3320 (3)0.3724 (3)0.0252 (8)
O10.6308 (2)0.2507 (4)0.3926 (3)0.0334 (9)
O1W0.75857 (19)0.1250 (3)0.6941 (3)0.0228 (8)
H1W0.71460.08770.68850.034*
H2W0.77940.15460.75980.034*
O2W0.8300 (2)0.1188 (4)0.4029 (3)0.0312 (9)
H3W0.85540.07940.36910.047*
H4W0.80510.18340.36310.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.01241 (14)0.01564 (15)0.01830 (15)0.00225 (9)0.00558 (10)0.00106 (9)
O50.0153 (18)0.048 (2)0.023 (2)0.0038 (17)0.0067 (16)0.0063 (18)
O20.0144 (18)0.052 (3)0.028 (2)0.0001 (18)0.0045 (16)0.001 (2)
O30.0271 (19)0.0201 (18)0.0287 (19)0.0097 (16)0.0153 (16)0.0047 (16)
C80.017 (3)0.018 (2)0.019 (3)0.003 (2)0.003 (2)0.000 (2)
O60.0132 (18)0.040 (2)0.027 (2)0.0019 (16)0.0068 (16)0.0024 (17)
C10.019 (3)0.031 (3)0.016 (2)0.006 (2)0.009 (2)0.007 (2)
C20.017 (2)0.021 (3)0.014 (2)0.005 (2)0.0058 (19)0.001 (2)
C30.023 (3)0.028 (3)0.033 (3)0.004 (2)0.017 (2)0.008 (2)
C60.019 (3)0.022 (3)0.031 (3)0.003 (2)0.010 (2)0.001 (2)
C40.019 (3)0.049 (4)0.030 (3)0.007 (3)0.014 (2)0.008 (3)
C50.036 (3)0.022 (3)0.040 (3)0.013 (3)0.018 (3)0.004 (3)
N10.023 (2)0.044 (3)0.026 (2)0.009 (2)0.010 (2)0.001 (2)
C70.019 (2)0.017 (3)0.023 (3)0.004 (2)0.006 (2)0.002 (2)
O40.033 (2)0.0225 (18)0.0218 (18)0.0081 (16)0.0128 (16)0.0050 (16)
O10.038 (2)0.027 (2)0.041 (2)0.0189 (18)0.0211 (19)0.0120 (19)
O1W0.0180 (17)0.027 (2)0.0260 (18)0.0064 (15)0.0116 (15)0.0071 (16)
O2W0.049 (2)0.024 (2)0.029 (2)0.0045 (18)0.0241 (18)0.0045 (17)
Geometric parameters (Å, º) top
Tb1—O1i2.280 (3)C2—C31.389 (7)
Tb1—O22.303 (3)C3—C41.379 (7)
Tb1—O52.383 (3)C3—H30.9300
Tb1—O4ii2.385 (3)C6—C51.380 (7)
Tb1—O2W2.427 (3)C6—H60.9300
Tb1—O32.435 (3)C4—N11.330 (8)
Tb1—O6iii2.443 (4)C4—H40.9300
Tb1—O1W2.443 (3)C5—N11.335 (7)
O5—C81.254 (6)C5—H50.9300
O2—C11.244 (6)C7—O41.251 (6)
O3—C71.259 (6)C7—C7ii1.545 (10)
C8—O61.256 (6)O4—Tb1ii2.385 (3)
C8—C8iii1.529 (10)O1—Tb1i2.280 (3)
O6—Tb1iii2.443 (4)O1W—H1W0.8429
C1—O11.261 (6)O1W—H2W0.8420
C1—C21.511 (6)O2W—H3W0.8367
C2—C61.383 (7)O2W—H4W0.8365
O1i—Tb1—O2103.43 (14)O6—C8—C8iii116.0 (5)
O1i—Tb1—O584.39 (13)C8—O6—Tb1iii118.3 (3)
O2—Tb1—O5154.22 (14)O2—C1—O1125.4 (5)
O1i—Tb1—O4ii151.43 (12)O2—C1—C2117.9 (5)
O2—Tb1—O4ii80.50 (13)O1—C1—C2116.7 (5)
O5—Tb1—O4ii104.46 (13)C6—C2—C3118.0 (4)
O1i—Tb1—O2W72.60 (12)C6—C2—C1120.7 (4)
O2—Tb1—O2W79.21 (13)C3—C2—C1121.3 (5)
O5—Tb1—O2W79.88 (13)C4—C3—C2118.6 (5)
O4ii—Tb1—O2W135.25 (12)C4—C3—H3120.7
O1i—Tb1—O3141.11 (12)C2—C3—H3120.7
O2—Tb1—O378.56 (13)C5—C6—C2119.4 (5)
O5—Tb1—O380.16 (12)C5—C6—H6120.3
O4ii—Tb1—O367.43 (11)C2—C6—H6120.3
O2W—Tb1—O369.67 (11)N1—C4—C3123.8 (5)
O1i—Tb1—O6iii85.24 (13)N1—C4—H4118.1
O2—Tb1—O6iii137.67 (13)C3—C4—H4118.1
O5—Tb1—O6iii66.65 (12)N1—C5—C6122.9 (5)
O4ii—Tb1—O6iii74.06 (12)N1—C5—H5118.6
O2W—Tb1—O6iii141.48 (12)C6—C5—H5118.6
O3—Tb1—O6iii119.77 (12)C4—N1—C5117.4 (4)
O1i—Tb1—O1W75.34 (12)O4—C7—O3126.5 (5)
O2—Tb1—O1W72.48 (13)O4—C7—C7ii117.1 (5)
O5—Tb1—O1W133.16 (12)O3—C7—C7ii116.4 (5)
O4ii—Tb1—O1W79.12 (11)C7—O4—Tb1ii118.1 (3)
O2W—Tb1—O1W130.27 (12)C1—O1—Tb1i154.0 (4)
O3—Tb1—O1W138.71 (11)Tb1—O1W—H1W115.5
O6iii—Tb1—O1W69.91 (12)Tb1—O1W—H2W129.8
C8—O5—Tb1119.1 (3)H1W—O1W—H2W106.0
C1—O2—Tb1149.9 (4)Tb1—O2W—H3W122.5
C7—O3—Tb1116.5 (3)Tb1—O2W—H4W129.8
O5—C8—O6127.0 (5)H3W—O2W—H4W107.4
O5—C8—C8iii117.0 (5)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+3/2, y1/2, z+1; (iii) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O3iv0.842.222.992 (5)153
O2W—H4W···O1Wi0.842.193.003 (5)163
O1W—H1W···N1v0.841.832.661 (5)167
O2W—H3W···O6vi0.842.012.836 (5)172
Symmetry codes: (i) x+3/2, y+1/2, z+1; (iv) x, y, z+1/2; (v) x+1, y, z+1; (vi) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Tb(C6H4NO2)(C2O4)(H2O)2]
Mr405.07
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)17.7919 (18), 9.9259 (10), 12.9670 (13)
β (°) 112.414 (1)
V3)2117.0 (4)
Z8
Radiation typeMo Kα
µ (mm1)6.72
Crystal size (mm)0.23 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2004)
Tmin, Tmax0.241, 0.272
No. of measured, independent and
observed [I > 2σ(I)] reflections
5243, 1907, 1674
Rint0.031
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.01
No. of reflections1907
No. of parameters163
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.40, 1.31

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O3i0.842.222.992 (5)153.3
O2W—H4W···O1Wii0.842.193.003 (5)163.2
O1W—H1W···N1iii0.841.832.661 (5)167.3
O2W—H3W···O6iv0.842.012.836 (5)171.6
Symmetry codes: (i) x, y, z+1/2; (ii) x+3/2, y+1/2, z+1; (iii) x+1, y, z+1; (iv) x+2, y, z+1.
 

Acknowledgements

The authors acknowledge South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRizk, A. T., Kilner, C. A. & Halcrow, M. A. (2005). CrystEngComm, 7, 359–362.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds