metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua-μ2-isonicotinato-μ2-oxalato-terbium(III)]

aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 6 November 2008; accepted 2 December 2008; online 20 December 2008)

In the crystal structure of the title complex, [Tb(C6H4NO2)(C2O4)(H2O)2]n, the TbIII cation is coordinated by four O atoms from two oxalate ligands, two O atoms from two isonicotinate ligands and two O atoms from water mol­ecules within a distorted square–anti­prismatic coordination. The TbIII cation, the isonicotinate anion and the two crystallographically independent water mol­ecules occupy general positions, whereas one of the two crystallographically independent oxalate anions is located on a center of inversion, and the second oxalate anion is located on a twofold rotation axis. The TbIII cations are linked by the oxalate and isonicotinate anions into layers, which are connected via inter­molecular hydrogen-bonding and ππ stacking [with centroid-to-centroid distances of 3.509 (2) and 3.343 (3) Å] inter­actions into a three-dimensional network.

Related literature

For general background on coordination polymers and open-framework materials, see: Yaghi et al. (1998[Yaghi, O. M., Li, H. L., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.], 2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]); Serre et al. (2004[Serre, C., Millange, F., Thouvenot, C., Gardant, N., Pelle, F. & Ferey, G. (2004). J. Mater. Chem. 14, 1540-1543.]); James (2003[James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.]). For related structures, see: Xia et al. (2004[Xia, S. Q., Hu, S. M., Dai, J. C., Wu, X. T., Fu, Z. Y., Zhang, J. J. & Du, W. X. (2004). Polyhedron, 23, 1003-1009.]); Feng et al. (2003[Feng, L. Y., Wang, Y. H., Hu, C. W., Li, Y. G. & Wang, E. B. (2003). J. Mol. Struct. 650, 115-122.]). An independent determination of this structure is reported in the following paper, see: Fang et al. (2009[Fang, Z.-Q., Zeng, R.-H., Li, Y.-T., Yang, S. & Song, Z.-F. (2009). Acta Cryst. E65, m118.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb(C6H4NO2)(C2O4)(H2O)2]

  • Mr = 405.07

  • Monoclinic, C 2/c

  • a = 17.7957 (6) Å

  • b = 9.9229 (4) Å

  • c = 12.9673 (5) Å

  • β = 112.407 (2)°

  • V = 2116.95 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.72 mm−1

  • T = 273 (2) K

  • 0.36 × 0.30 × 0.24 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.113, Tmax = 0.207

  • 7256 measured reflections

  • 1906 independent reflections

  • 1618 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.053

  • S = 0.91

  • 1906 reflections

  • 145 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N1i 0.84 1.83 2.665 177
O1W—H2W⋯O2ii 0.84 2.19 2.992 (3) 159
O2W—H3W⋯O3iii 0.84 2.00 2.835 (3) 177
O2W—H4W⋯O1Wiv 0.84 2.21 2.998 (3) 156
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x, -y+2, z+{\script{1\over 2}}]; (iii) -x+1, -y+2, -z; (iv) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The use of multifunctional organic linker molecules in the preparation of coordination polymers and open-framework materials has led to the development of a rich field of chemistry (Yaghi et al., 1998, 2003; Serre et al., 2004; James, 2003) owing to the potential applications of these materials in catalysis, separation, gas storage and molecular recognition. In our own investigatins we used isonictinate and oxalate ligands for the preparation of new coordination polymers, because it has been found that both anions can act as multidentate ligands [Xia et al. (2004); Feng et al. (2003)] with versatile binding and coordination modes. During these investigations, single crystals of the title compound were obtained.

The TbIII centre in the title compound exhibits a distorted square-antiprismatic coordination geometry, defined by eight O atoms from two oxalate ligands, two O atom from two isonictinate ligands and two water molecules (Fig. 1). The oxalate and isonictinate ligands link the TbIII cations with Tb—Tb distances of 6.179 (2) Å, 6.183 (3) Å and 5.045 (2) Å, respectively, thus forming Tb-oxalate-isonictinate layers with the attached water that is pointing up and down (Fig. 2). The layers are connected into a three-dimensional network via inter/intramolecular O—H···O and O—H···N hydrogen bonding interactions (Table 1) involving the coordinated water molecules, the N atoms of isonictinate and the oxalate O atoms. They are also stabilized by π-π stacking interactions with centroid to centroid distances of 3.509 (2) Å and 3.343 (3) Å, respectively, among parellel pyridinium rings of neighboring complexes.

Related literature top

For general background on coordination polymers and open-framework materials, see: Yaghi et al. (1998, 2003); Serre et al. (2004); James (2003). For related structures, see: Xia et al. (2004); Feng et al. (2003). An independent determination of this structure is reported in the following paper, see: Feng et al. (2009).

Experimental top

A mixture of Tb2O3 (0.5 mmol, 0.175 g), sodium oxalate (1 mmol, 0.134 g), isonicotinic acid (1 mmol, 0.123 g) and H2O (10 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

C-H H atoms were placed in calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C). The O-H H atoms were located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å and H···H = 1.39 Å, each within a standard deviation of 0.01 Å, and with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) 1 - x, y, 0.5 - z; (ii) 0.5 - x, 2.5 - y, -z; (iii) 0.5 - x, 1.5 - y, -z]
[Figure 2] Fig. 2. Crystal structure of the title compound with view onto the layers. The H atoms are not shown for clarity.
Poly[diaqua-µ2-isonicotinato-µ2-oxalato-terbium(III)] top
Crystal data top
[Tb(C6H4NO2)(C2O4)(H2O)2]F(000) = 1536
Mr = 405.07Dx = 2.542 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8000 reflections
a = 17.7957 (6) Åθ = 1.7–26.0°
b = 9.9229 (4) ŵ = 6.72 mm1
c = 12.9673 (5) ÅT = 273 K
β = 112.407 (2)°Block, colorless
V = 2116.95 (14) Å30.36 × 0.30 × 0.24 mm
Z = 8
Data collection top
Bruker APEXII area-detector
diffractometer
1906 independent reflections
Radiation source: fine-focus sealed tube1618 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2120
Tmin = 0.113, Tmax = 0.207k = 1111
7256 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0299P)2 + 5.163P]
where P = (Fo2 + 2Fc2)/3
1906 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.52 e Å3
6 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Tb(C6H4NO2)(C2O4)(H2O)2]V = 2116.95 (14) Å3
Mr = 405.07Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.7957 (6) ŵ = 6.72 mm1
b = 9.9229 (4) ÅT = 273 K
c = 12.9673 (5) Å0.36 × 0.30 × 0.24 mm
β = 112.407 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
1906 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1618 reflections with I > 2σ(I)
Tmin = 0.113, Tmax = 0.207Rint = 0.034
7256 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0236 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 0.91Δρmax = 0.52 e Å3
1906 reflectionsΔρmin = 0.88 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.323989 (12)0.96756 (2)0.074846 (17)0.01399 (9)
O10.46185 (19)1.0185 (4)0.1051 (3)0.0274 (9)
O20.3030 (2)1.1497 (3)0.0596 (3)0.0229 (8)
O50.3693 (2)0.7501 (4)0.1067 (3)0.0331 (9)
C10.2585 (3)1.2447 (5)0.0542 (4)0.0172 (11)
C20.5146 (3)1.0111 (5)0.2013 (4)0.0172 (11)
C70.5237 (3)0.6498 (6)0.1361 (4)0.0231 (12)
H70.51900.74320.13480.028*
C80.3727 (3)0.6297 (6)0.0808 (4)0.0196 (11)
C30.4558 (3)0.5688 (5)0.1108 (3)0.0163 (11)
C60.5989 (3)0.5889 (7)0.1636 (4)0.0281 (13)
H60.64440.64390.18070.034*
C40.4671 (3)0.4306 (5)0.1135 (4)0.0220 (12)
H40.42280.37310.09610.026*
C50.54429 (8)0.37835 (15)0.14206 (11)0.0281 (13)
H50.55080.28530.14400.034*
N10.60972 (8)0.45622 (15)0.16691 (11)0.0279 (11)
O30.59033 (8)1.00505 (15)0.22872 (11)0.0229 (8)
O40.22609 (8)1.33232 (15)0.12763 (11)0.0232 (8)
O60.31250 (8)0.55572 (15)0.03267 (11)0.0301 (9)
O1W0.25866 (8)0.87408 (15)0.19413 (11)0.0208 (8)
H1W0.21220.90300.18520.031*
H2W0.28330.86220.26300.031*
O2W0.33025 (8)0.88114 (15)0.09693 (11)0.0286 (9)
H3W0.35500.91570.13410.043*
H4W0.29660.82640.13940.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.01048 (13)0.01587 (15)0.01480 (12)0.00208 (11)0.00389 (9)0.00099 (11)
O10.0140 (17)0.047 (3)0.0180 (17)0.0045 (17)0.0027 (14)0.0043 (17)
O20.0294 (19)0.023 (2)0.0202 (17)0.0082 (17)0.0143 (15)0.0022 (16)
O50.039 (2)0.028 (2)0.039 (2)0.017 (2)0.0227 (19)0.0083 (19)
C10.013 (2)0.019 (3)0.021 (3)0.001 (2)0.007 (2)0.001 (2)
C20.009 (2)0.017 (3)0.021 (2)0.002 (2)0.002 (2)0.000 (2)
C70.019 (3)0.026 (3)0.022 (3)0.004 (2)0.005 (2)0.009 (2)
C80.020 (3)0.030 (3)0.012 (2)0.008 (2)0.008 (2)0.010 (2)
C30.017 (2)0.024 (3)0.007 (2)0.005 (2)0.0035 (18)0.002 (2)
C60.016 (3)0.047 (4)0.022 (3)0.004 (3)0.008 (2)0.006 (3)
C40.020 (3)0.022 (3)0.023 (3)0.002 (2)0.007 (2)0.004 (2)
C50.028 (3)0.026 (3)0.034 (3)0.013 (3)0.016 (2)0.007 (3)
N10.015 (2)0.046 (4)0.024 (2)0.007 (2)0.0081 (18)0.003 (2)
O30.0175 (18)0.033 (2)0.0197 (17)0.0024 (16)0.0089 (14)0.0018 (15)
O40.032 (2)0.020 (2)0.0195 (17)0.0121 (17)0.0116 (15)0.0052 (16)
O60.0095 (17)0.050 (3)0.0259 (18)0.0005 (18)0.0013 (14)0.0006 (18)
O1W0.0149 (16)0.028 (2)0.0201 (16)0.0064 (16)0.0076 (14)0.0074 (16)
O2W0.040 (2)0.028 (2)0.0232 (18)0.0068 (19)0.0179 (17)0.0074 (17)
Geometric parameters (Å, º) top
Tb1—O52.285 (4)C7—H70.9300
Tb1—O6i2.3055 (14)C8—O61.251 (5)
Tb1—O4ii2.3814 (14)C8—C31.505 (6)
Tb1—O12.386 (3)C3—C41.385 (7)
Tb1—O2W2.4286 (13)C6—N11.329 (7)
Tb1—O22.439 (3)C6—H60.9300
Tb1—O1W2.4444 (13)C4—C51.380 (5)
Tb1—O3iii2.4476 (13)C4—H40.9300
O1—C21.245 (6)C5—N11.3306
O2—C11.251 (5)C5—H50.9300
O5—C81.249 (6)O3—Tb1iii2.4476 (13)
C1—O41.255 (5)O4—Tb1ii2.3814 (14)
C1—C1ii1.549 (9)O6—Tb1i2.3055 (14)
C2—O31.257 (5)O1W—H1W0.8400
C2—C2iii1.537 (9)O1W—H2W0.8400
C7—C31.382 (7)O2W—H3W0.8400
C7—C61.387 (7)O2W—H4W0.8400
O5—Tb1—O6i103.43 (11)O4—C1—C1ii116.8 (5)
O5—Tb1—O4ii151.65 (9)O1—C2—O3127.1 (4)
O6i—Tb1—O4ii80.4O1—C2—C2iii117.5 (5)
O5—Tb1—O184.30 (13)O3—C2—C2iii115.4 (5)
O6i—Tb1—O1154.26 (9)C3—C7—C6118.6 (5)
O4ii—Tb1—O1104.49 (10)C3—C7—H7120.7
O5—Tb1—O2W72.32 (10)C6—C7—H7120.7
O6i—Tb1—O2W79.4O5—C8—O6125.1 (4)
O4ii—Tb1—O2W135.3O5—C8—C3117.3 (5)
O1—Tb1—O2W79.74 (9)O6—C8—C3117.6 (4)
O5—Tb1—O2140.94 (11)C7—C3—C4117.7 (4)
O6i—Tb1—O278.63 (9)C7—C3—C8120.8 (5)
O4ii—Tb1—O267.37 (8)C4—C3—C8121.5 (4)
O1—Tb1—O280.13 (11)N1—C6—C7123.6 (5)
O2W—Tb1—O269.77 (8)N1—C6—H6118.2
O5—Tb1—O1W75.35 (9)C7—C6—H6118.2
O6i—Tb1—O1W72.49 (5)C5—C4—C3120.0 (4)
O4ii—Tb1—O1W79.29 (5)C5—C4—H4120.0
O1—Tb1—O1W133.11 (8)C3—C4—H4120.0
O2W—Tb1—O1W130.20 (6)N1—C5—C4122.4 (2)
O2—Tb1—O1W138.86 (8)N1—C5—H5118.8
O5—Tb1—O3iii85.32 (10)C4—C5—H5118.8
O6i—Tb1—O3iii137.68 (6)C6—N1—C5117.7 (2)
O4ii—Tb1—O3iii74.2C2—O3—Tb1iii118.5 (2)
O1—Tb1—O3iii66.61 (8)C1—O4—Tb1ii118.2 (2)
O2W—Tb1—O3iii141.3C8—O6—Tb1i149.8 (3)
O2—Tb1—O3iii119.75 (9)Tb1—O1W—H1W117.6
O1W—Tb1—O3iii69.9Tb1—O1W—H2W123.0
C2—O1—Tb1119.2 (3)H1W—O1W—H2W106.4
C1—O2—Tb1116.5 (3)Tb1—O2W—H3W126.8
C8—O5—Tb1154.8 (3)Tb1—O2W—H4W124.0
O2—C1—O4126.6 (4)H3W—O2W—H4W106.6
O2—C1—C1ii116.6 (5)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y+5/2, z; (iii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N1iv0.841.832.665177
O1W—H2W···O2v0.842.192.992 (3)159
O2W—H3W···O3vi0.842.002.835 (3)177
O2W—H4W···O1Wi0.842.212.998 (3)156
Symmetry codes: (i) x+1/2, y+3/2, z; (iv) x1/2, y+1/2, z; (v) x, y+2, z+1/2; (vi) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Tb(C6H4NO2)(C2O4)(H2O)2]
Mr405.07
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)17.7957 (6), 9.9229 (4), 12.9673 (5)
β (°) 112.407 (2)
V3)2116.95 (14)
Z8
Radiation typeMo Kα
µ (mm1)6.72
Crystal size (mm)0.36 × 0.30 × 0.24
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.113, 0.207
No. of measured, independent and
observed [I > 2σ(I)] reflections
7256, 1906, 1618
Rint0.034
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.053, 0.91
No. of reflections1906
No. of parameters145
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.88

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N1i0.841.832.665176.8
O1W—H2W···O2ii0.842.192.992 (3)158.8
O2W—H3W···O3iii0.842.002.835 (3)177.4
O2W—H4W···O1Wiv0.842.212.998 (3)155.5
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y+2, z+1/2; (iii) x+1, y+2, z; (iv) x+1/2, y+3/2, z.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, Z.-Q., Zeng, R.-H., Li, Y.-T., Yang, S. & Song, Z.-F. (2009). Acta Cryst. E65, m118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFeng, L. Y., Wang, Y. H., Hu, C. W., Li, Y. G. & Wang, E. B. (2003). J. Mol. Struct. 650, 115–122.  Web of Science CSD CrossRef CAS Google Scholar
First citationJames, S. L. (2003). Chem. Soc. Rev. 32, 276–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSerre, C., Millange, F., Thouvenot, C., Gardant, N., Pelle, F. & Ferey, G. (2004). J. Mater. Chem. 14, 1540–1543.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, S. Q., Hu, S. M., Dai, J. C., Wu, X. T., Fu, Z. Y., Zhang, J. J. & Du, W. X. (2004). Polyhedron, 23, 1003–1009.  Web of Science CSD CrossRef CAS Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYaghi, O. M., Li, H. L., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds