organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl-N-ethyl­morpholinium chloride

aFaculty of Chemistry and Material Science, Langfang Teachers' College, Hebei, Langfang 065000, People's Republic of China
*Correspondence e-mail: biany@126.com

(Received 2 December 2008; accepted 9 December 2008; online 13 December 2008)

In the crystal structure of the title compound, C13H20NO+·Cl, the morpholine ring is in a chair conformation and the mol­ecules are linked by weak inter­molecular C—H⋯Cl hydrogen bonding.

Related literature

For details of the importance of quaternary morpholine halides see: Kim et al. (2005[Kim, K. S., Park, S. Y., Yeon, S. H. & Lee, H. (2005). Electrochim. Acta, 50, 5673-5678.], 2006[Kim, K. S., Choi, S., Cha, J. H., Yeon, S. H. & Lee, H. (2006). J. Mater. Chem. 16, 1315-1317.]).

[Scheme 1]

Experimental

Crystal data
  • C13H20NO+·Cl

  • Mr = 241.75

  • Monoclinic, P 21 /c

  • a = 13.179 (3) Å

  • b = 8.4176 (17) Å

  • c = 12.255 (3) Å

  • β = 108.48 (3)°

  • V = 1289.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 113 (2) K

  • 0.16 × 0.16 × 0.06 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.957, Tmax = 0.984

  • 7151 measured reflections

  • 2266 independent reflections

  • 2017 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.090

  • S = 1.07

  • 2266 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯Cl1i 0.99 2.74 3.4724 (16) 131
C5—H5B⋯Cl1ii 0.99 2.61 3.5500 (16) 158
C11—H11⋯Cl1 0.95 2.66 3.5501 (16) 156
C12—H12B⋯Cl1iii 0.99 2.61 3.5062 (16) 151
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL

Supporting information


Comment top

Quaternary morpholine halides are valuable precursors for the preparation of ionic liquids by ion metathesis (Kim et al.,2005). Ionic liquids based on the morpholinium cation are favored becaused of their low cost, easy synthesis, and electrochemical stability (Kim et al.,2006). Here we report a new structure of this class of compounds.

In the crystal structure the morpholine ring adopts a chair conformation (Fig. 1). The cations and anions are connected via weak C—H···Cl hydrogen bonding into a three-dimensional network (Tab 1).

Related literature top

For related literature on the importance of quaternary morpholine halides see: Kim et al. (2005, 2006).

Experimental top

Benzyl chloride(0.12 mol) was added to a solution of 4-ethylmorpholine(0.1 mol) in 20 ml of acetonitrile under stirring. The mixture was stirred at 60 °C for 5 h. The solvent was removed under reduced pressure. The remaining brownish, viscous liquid crystallized slowly at room temperature in a mixture of ethanol and acetone [1/20(v/v)]. Single-crystals were obtained by slow evaporation of the solvewnt from a solution in a mixture of ethanol and acetone [1/20(v/v)].

Refinement top

The H atoms were positioned with idealized geometry and were refinement isotropic using a riding model with C–H = 0.96–0.97 Å and Uiso (H) = 1.2 Ueq (C) for aromatic and methylene H atoms as well as Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.
N-Benzyl-N-ethylmorpholinium chloride top
Crystal data top
C13H20NO+·ClF(000) = 520
Mr = 241.75Dx = 1.245 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.179 (3) ÅCell parameters from 3736 reflections
b = 8.4176 (17) Åθ = 1.6–27.9°
c = 12.255 (3) ŵ = 0.28 mm1
β = 108.48 (3)°T = 113 K
V = 1289.5 (4) Å3Prism, colorless
Z = 40.16 × 0.16 × 0.06 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2266 independent reflections
Radiation source: rotating anode2017 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.031
ω and ϕ scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 1514
Tmin = 0.957, Tmax = 0.984k = 910
7151 measured reflectionsl = 714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.1492P]
where P = (Fo2 + 2Fc2)/3
2266 reflections(Δ/σ)max = 0.002
146 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H20NO+·ClV = 1289.5 (4) Å3
Mr = 241.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.179 (3) ŵ = 0.28 mm1
b = 8.4176 (17) ÅT = 113 K
c = 12.255 (3) Å0.16 × 0.16 × 0.06 mm
β = 108.48 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2266 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2017 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.984Rint = 0.031
7151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
2266 reflectionsΔρmin = 0.19 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.31149 (3)1.03231 (4)0.23458 (3)0.02272 (14)
O10.37595 (8)0.96775 (12)0.89939 (8)0.0230 (3)
N10.30801 (9)0.93219 (13)0.64941 (10)0.0165 (3)
C10.41986 (11)0.89933 (18)0.72853 (12)0.0199 (3)
H1A0.42580.78590.75090.024*
H1B0.47180.92040.68700.024*
C20.44732 (12)1.00099 (18)0.83543 (12)0.0220 (3)
H2A0.52180.97940.88380.026*
H2B0.44201.11460.81350.026*
C30.27034 (12)1.00809 (18)0.83116 (13)0.0227 (3)
H3A0.26741.12250.81160.027*
H3B0.22080.98920.87600.027*
C40.23423 (11)0.91112 (18)0.72105 (12)0.0201 (3)
H4A0.23190.79740.74070.024*
H4B0.16100.94380.67520.024*
C50.28285 (11)0.80630 (17)0.55463 (12)0.0198 (3)
H5A0.32830.82610.50540.024*
H5B0.30250.70080.59080.024*
C60.16760 (11)0.80131 (16)0.47930 (12)0.0182 (3)
C70.09501 (12)0.70572 (17)0.51050 (13)0.0224 (3)
H70.11740.65040.58170.027*
C80.00926 (12)0.69048 (18)0.43888 (13)0.0260 (4)
H80.05860.62730.46200.031*
C90.04183 (12)0.76705 (18)0.33380 (13)0.0263 (4)
H90.11280.75360.28340.032*
C100.02947 (12)0.86372 (19)0.30209 (13)0.0268 (4)
H100.00680.91800.23040.032*
C110.13372 (12)0.88136 (18)0.37469 (12)0.0224 (3)
H110.18200.94830.35290.027*
C120.29561 (12)1.09797 (17)0.59839 (12)0.0227 (3)
H12A0.22321.10760.54170.027*
H12B0.30081.17570.66060.027*
C130.37708 (14)1.1417 (2)0.53976 (13)0.0328 (4)
H13A0.44931.13290.59500.049*
H13B0.36461.25120.51130.049*
H13C0.37001.06950.47510.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0235 (2)0.0170 (2)0.0296 (2)0.00200 (13)0.01123 (17)0.00037 (14)
O10.0241 (6)0.0242 (6)0.0192 (5)0.0001 (4)0.0046 (5)0.0020 (4)
N10.0168 (6)0.0128 (6)0.0188 (6)0.0008 (5)0.0043 (5)0.0006 (5)
C10.0151 (7)0.0203 (8)0.0219 (7)0.0008 (6)0.0023 (6)0.0000 (6)
C20.0194 (7)0.0230 (8)0.0213 (7)0.0024 (6)0.0035 (6)0.0002 (6)
C30.0225 (8)0.0234 (8)0.0227 (8)0.0002 (6)0.0080 (6)0.0017 (6)
C40.0178 (7)0.0189 (8)0.0250 (8)0.0014 (6)0.0086 (6)0.0012 (6)
C50.0205 (7)0.0140 (7)0.0243 (7)0.0012 (6)0.0065 (6)0.0044 (6)
C60.0195 (7)0.0127 (7)0.0216 (7)0.0000 (6)0.0054 (6)0.0052 (6)
C70.0266 (8)0.0139 (7)0.0247 (8)0.0027 (6)0.0053 (7)0.0001 (6)
C80.0223 (8)0.0187 (8)0.0362 (9)0.0044 (6)0.0082 (7)0.0017 (7)
C90.0203 (7)0.0208 (8)0.0325 (8)0.0022 (6)0.0007 (7)0.0042 (7)
C100.0298 (8)0.0251 (9)0.0221 (8)0.0047 (7)0.0034 (7)0.0010 (6)
C110.0262 (8)0.0200 (8)0.0226 (8)0.0018 (6)0.0100 (7)0.0017 (6)
C120.0305 (8)0.0122 (7)0.0210 (7)0.0014 (6)0.0020 (6)0.0012 (6)
C130.0501 (10)0.0252 (9)0.0227 (8)0.0146 (8)0.0108 (8)0.0002 (7)
Geometric parameters (Å, º) top
O1—C31.4191 (18)C5—H5B0.9900
O1—C21.4300 (17)C6—C111.391 (2)
N1—C11.5111 (18)C6—C71.393 (2)
N1—C41.5129 (18)C7—C81.382 (2)
N1—C121.5167 (18)C7—H70.9500
N1—C51.5290 (18)C8—C91.381 (2)
C1—C21.510 (2)C8—H80.9500
C1—H1A0.9900C9—C101.388 (2)
C1—H1B0.9900C9—H90.9500
C2—H2A0.9900C10—C111.388 (2)
C2—H2B0.9900C10—H100.9500
C3—C41.519 (2)C11—H110.9500
C3—H3A0.9900C12—C131.515 (2)
C3—H3B0.9900C12—H12A0.9900
C4—H4A0.9900C12—H12B0.9900
C4—H4B0.9900C13—H13A0.9800
C5—C61.507 (2)C13—H13B0.9800
C5—H5A0.9900C13—H13C0.9800
C3—O1—C2108.83 (11)C6—C5—H5B108.6
C1—N1—C4106.37 (10)N1—C5—H5B108.6
C1—N1—C12112.87 (11)H5A—C5—H5B107.6
C4—N1—C12110.00 (10)C11—C6—C7119.02 (14)
C1—N1—C5107.05 (11)C11—C6—C5121.18 (13)
C4—N1—C5109.58 (10)C7—C6—C5119.63 (13)
C12—N1—C5110.82 (11)C8—C7—C6120.69 (14)
C2—C1—N1111.70 (12)C8—C7—H7119.7
C2—C1—H1A109.3C6—C7—H7119.7
N1—C1—H1A109.3C9—C8—C7120.09 (14)
C2—C1—H1B109.3C9—C8—H8120.0
N1—C1—H1B109.3C7—C8—H8120.0
H1A—C1—H1B107.9C8—C9—C10119.78 (14)
O1—C2—C1110.26 (12)C8—C9—H9120.1
O1—C2—H2A109.6C10—C9—H9120.1
C1—C2—H2A109.6C11—C10—C9120.23 (14)
O1—C2—H2B109.6C11—C10—H10119.9
C1—C2—H2B109.6C9—C10—H10119.9
H2A—C2—H2B108.1C10—C11—C6120.17 (14)
O1—C3—C4111.57 (12)C10—C11—H11119.9
O1—C3—H3A109.3C6—C11—H11119.9
C4—C3—H3A109.3C13—C12—N1114.80 (13)
O1—C3—H3B109.3C13—C12—H12A108.6
C4—C3—H3B109.3N1—C12—H12A108.6
H3A—C3—H3B108.0C13—C12—H12B108.6
N1—C4—C3112.00 (11)N1—C12—H12B108.6
N1—C4—H4A109.2H12A—C12—H12B107.5
C3—C4—H4A109.2C12—C13—H13A109.5
N1—C4—H4B109.2C12—C13—H13B109.5
C3—C4—H4B109.2H13A—C13—H13B109.5
H4A—C4—H4B107.9C12—C13—H13C109.5
C6—C5—N1114.73 (11)H13A—C13—H13C109.5
C6—C5—H5A108.6H13B—C13—H13C109.5
N1—C5—H5A108.6
C4—N1—C1—C254.32 (14)N1—C5—C6—C1195.68 (15)
C12—N1—C1—C266.40 (15)N1—C5—C6—C789.09 (16)
C5—N1—C1—C2171.41 (11)C11—C6—C7—C80.1 (2)
C3—O1—C2—C162.64 (15)C5—C6—C7—C8175.43 (13)
N1—C1—C2—O161.35 (15)C6—C7—C8—C91.7 (2)
C2—O1—C3—C461.11 (15)C7—C8—C9—C102.2 (2)
C1—N1—C4—C352.26 (15)C8—C9—C10—C111.1 (2)
C12—N1—C4—C370.29 (15)C9—C10—C11—C60.5 (2)
C5—N1—C4—C3167.65 (12)C7—C6—C11—C101.0 (2)
O1—C3—C4—N157.89 (16)C5—C6—C11—C10174.27 (13)
C1—N1—C5—C6169.51 (11)C1—N1—C12—C1352.59 (16)
C4—N1—C5—C654.55 (15)C4—N1—C12—C13171.21 (12)
C12—N1—C5—C667.02 (15)C5—N1—C12—C1367.46 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl1i0.992.743.4724 (16)131
C5—H5B···Cl1ii0.992.613.5500 (16)158
C11—H11···Cl10.952.663.5501 (16)156
C12—H12B···Cl1iii0.992.613.5062 (16)151
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H20NO+·Cl
Mr241.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)13.179 (3), 8.4176 (17), 12.255 (3)
β (°) 108.48 (3)
V3)1289.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.16 × 0.16 × 0.06
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.957, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7151, 2266, 2017
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 1.07
No. of reflections2266
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl1i0.992.743.4724 (16)131.3
C5—H5B···Cl1ii0.992.613.5500 (16)157.7
C11—H11···Cl10.952.663.5501 (16)156.0
C12—H12B···Cl1iii0.992.613.5062 (16)150.8
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+5/2, z+1/2.
 

References

First citationKim, K. S., Choi, S., Cha, J. H., Yeon, S. H. & Lee, H. (2006). J. Mater. Chem. 16, 1315–1317.  Web of Science CrossRef CAS Google Scholar
First citationKim, K. S., Park, S. Y., Yeon, S. H. & Lee, H. (2005). Electrochim. Acta, 50, 5673–5678.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds