organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(Z)-(1-Methyl-1H-pyrrol-2-yl)methyl­­idene]-1H-1,2,4-triazol-5-amine

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 3 December 2008; accepted 4 December 2008; online 10 December 2008)

In the title compound, C8H9N5, a Schiff base derived from N-methyl­pyrrole-2-carbaldehyde and 3-amino-1,2,4-triazole, the C=N double bond linking the two aromatic rings has a Z conformation. The two rings are twisted by 24.20 (5)°. A chain motif results from N—H⋯N hydrogen bonding.

Related literature

For a related structure, see: Arfan et al. (2008[Arfan, M., Tahir, M. N., Khan, R. & Iqbal, M. S. (2008). Acta Cryst. E64, o1505.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N5

  • Mr = 175.20

  • Monoclinic, P 21 /c

  • a = 7.2519 (3) Å

  • b = 12.8616 (6) Å

  • c = 9.7445 (4) Å

  • β = 101.917 (2)°

  • V = 889.29 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 (2) K

  • 0.26 × 0.20 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.988

  • 10203 measured reflections

  • 2212 independent reflections

  • 1651 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.03

  • 2212 reflections

  • 136 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3n⋯N5i 0.91 (1) 1.92 (1) 2.8225 (12) 171 (1)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

1,2,4-triazole ring is a basic aromatic ring and it possess various medicinal properties. The title compound (I), has been prepared to utilize it as an intermediate ligand and for complexation with various metals.

In the crystal structure of (I), (Fig 1), the pyrrole ring A(N1,C2—C5) is connected to the 1,2,4 triazole ring B(C7/N3/N4/C8/N5) through the Shiff bond C==N. There exist an intramolecular and an intermolecular H-bond (Fig 2), Table 1. The bond distances and bond angles of ring B are compareable as observed in the same moiety of 3-(2-Benzamidophenyl)-4-(4-hydroxyphenyl)- 5-methyl-4H-1,2,4-triazol-1-ium chloride (Arfan et al., 2008). Due to intermolecular H-bonding, the compound forms polymeric sheets. The dihedral angle between the rings A and B is 24.20 (5)°. The molecules are stabilized due to π-π interactions between the centroids CgA and CgB of rings A and B respectively. The centroid to centroid, CgA···CgBi [Symmetry code: i = 1 - x, 1 - y, 1 - z] and CgB···CgAii [Symmetry code: ii = - x, 1 - y, 1 - z] is 3.9008 (8) and 3.9009 (8) Å, respectively.

Related literature top

For a related structure, see: Arfan et al. (2008).

Experimental top

N-methyl pyrrole-2-carboxyaldehyde (1.047 ml, 0.01 M) in methanol solution (10 ml) was added to magnetically stirred methanol solution (20 ml) of 3-amino 1,2,4 triazole (0.84 g m, 0.01 M) and mixture refluxed for 5 h through monitoring by TLC. After completion of the reaction, the resultant mixture was cooled to room temperature, filtered and reduced nearly half of its volume by rotary. It was then allowed to stay at room temperature for 2 days which resulted in the formation of a colorless solid product. It was filtered, washed with methanol and recrystallized with a mixture of ethanol:methanol (1:1).

Refinement top

H-atoms were positioned geometrically, with C—H = 0.96 Å for methyl carbon and constrained to ride on their parent atom. The coordinates of all other H-atoms were refined. The Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP-3 for Windows (Farrugia, 1997) drawing of the title compound, C8H9N5, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular H-bonding is shown by dashed lines.
[Figure 2] Fig. 2. The partial unit cell packing of (I) (Spek, 2003) showing the interamolecular and intermolecular hydrogen bonding showing that polymeric sheets are formed.
N-[(Z)-(1-Methyl-1H-pyrrol-2-yl)methylidene]-1H- 1,2,4-triazol-5-amine top
Crystal data top
C8H9N5F(000) = 368
Mr = 175.20Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1859 reflections
a = 7.2519 (3) Åθ = 2.7–28.3°
b = 12.8616 (6) ŵ = 0.09 mm1
c = 9.7445 (4) ÅT = 296 K
β = 101.917 (2)°Prismatic, orange
V = 889.29 (7) Å30.26 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2212 independent reflections
Radiation source: fine-focus sealed tube1651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 7.4 pixels mm-1θmax = 28.3°, θmin = 2.7°
ω scansh = 59
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1617
Tmin = 0.976, Tmax = 0.988l = 1212
10203 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.079P]
where P = (Fo2 + 2Fc2)/3
2212 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C8H9N5V = 889.29 (7) Å3
Mr = 175.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2519 (3) ŵ = 0.09 mm1
b = 12.8616 (6) ÅT = 296 K
c = 9.7445 (4) Å0.26 × 0.20 × 0.16 mm
β = 101.917 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2212 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1651 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.988Rint = 0.024
10203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.16 e Å3
2212 reflectionsΔρmin = 0.17 e Å3
136 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.11672 (13)0.58683 (8)0.33358 (11)0.0543 (3)
N20.27287 (13)0.37308 (7)0.38528 (9)0.0459 (3)
N30.38353 (14)0.21080 (7)0.32861 (9)0.0475 (3)
N40.44733 (16)0.11865 (8)0.38789 (10)0.0552 (3)
N50.37569 (15)0.22874 (7)0.54902 (9)0.0494 (3)
C10.0572 (2)0.53330 (12)0.20067 (14)0.0754 (5)
C20.0834 (2)0.68853 (11)0.35562 (19)0.0691 (5)
C30.1530 (2)0.71296 (12)0.49152 (19)0.0719 (6)
C40.23118 (19)0.62366 (11)0.55771 (16)0.0609 (5)
C50.20967 (15)0.54493 (9)0.45902 (12)0.0471 (3)
C60.27772 (15)0.44120 (9)0.48170 (12)0.0451 (3)
C70.34307 (15)0.27546 (8)0.42465 (10)0.0415 (3)
C80.43865 (19)0.13408 (10)0.51969 (12)0.0545 (4)
H1A0.032200.575560.138370.1132*
H1B0.000320.468260.215990.1132*
H1C0.164700.520680.159760.1132*
H20.025 (2)0.7315 (13)0.2805 (17)0.0829*
H30.149 (2)0.7801 (13)0.5321 (17)0.0862*
H3N0.3769 (18)0.2235 (10)0.2359 (14)0.0571*
H40.294 (2)0.6150 (11)0.6550 (17)0.0730*
H60.3326 (17)0.4259 (9)0.5798 (14)0.0541*
H80.4755 (19)0.0815 (11)0.5904 (15)0.0655*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0532 (5)0.0502 (6)0.0587 (6)0.0034 (4)0.0099 (4)0.0071 (5)
N20.0558 (5)0.0467 (5)0.0355 (5)0.0026 (4)0.0102 (4)0.0039 (4)
N30.0696 (6)0.0446 (5)0.0290 (4)0.0016 (4)0.0116 (4)0.0003 (4)
N40.0813 (7)0.0435 (6)0.0415 (5)0.0025 (5)0.0143 (5)0.0004 (4)
N50.0708 (6)0.0486 (5)0.0302 (4)0.0041 (4)0.0137 (4)0.0046 (4)
C10.0920 (10)0.0713 (10)0.0546 (8)0.0084 (8)0.0044 (7)0.0100 (7)
C20.0635 (8)0.0525 (8)0.0924 (11)0.0090 (6)0.0187 (7)0.0113 (7)
C30.0720 (9)0.0503 (8)0.0983 (12)0.0023 (7)0.0292 (8)0.0106 (8)
C40.0618 (8)0.0581 (8)0.0653 (8)0.0038 (6)0.0189 (6)0.0101 (6)
C50.0455 (5)0.0481 (6)0.0494 (6)0.0023 (5)0.0135 (4)0.0009 (5)
C60.0499 (6)0.0485 (6)0.0373 (5)0.0020 (5)0.0102 (4)0.0035 (5)
C70.0515 (6)0.0444 (6)0.0288 (5)0.0021 (4)0.0090 (4)0.0009 (4)
C80.0782 (8)0.0466 (7)0.0388 (6)0.0043 (6)0.0120 (5)0.0068 (5)
Geometric parameters (Å, º) top
N1—C11.4515 (17)C3—C41.380 (2)
N1—C21.3553 (18)C4—C51.3830 (19)
N1—C51.3779 (15)C5—C61.4238 (16)
N2—C61.2798 (14)C1—H1A0.9600
N2—C71.3792 (14)C1—H1B0.9600
N3—N41.3572 (14)C1—H1C0.9600
N3—C71.3293 (14)C2—H20.945 (16)
N4—C81.3139 (15)C3—H30.953 (17)
N5—C71.3294 (13)C4—H40.970 (16)
N5—C81.3514 (16)C6—H60.977 (13)
N3—H3N0.910 (13)C8—H80.963 (14)
C2—C31.353 (3)
N1···N22.9763 (14)C1···H3vii3.058 (16)
N2···N12.9763 (14)C6···H1B2.9600
N2···C12.9609 (17)C7···H2iv3.039 (16)
N3···N5i2.8225 (12)C7···H3Niii2.992 (13)
N3···N52.1725 (12)C8···H8ii3.083 (14)
N4···C8ii3.4283 (17)C8···H3Niii2.896 (13)
N4···N52.2532 (14)H1A···H22.4200
N5···N3iii2.8225 (12)H1B···N22.6100
N5···N42.2532 (14)H1B···C62.9600
N2···H1B2.6100H1C···N22.8900
N2···H1C2.8900H2···H1A2.4200
N3···H2iv2.946 (15)H2···N3viii2.946 (15)
N4···H8ii2.634 (14)H2···C7viii3.039 (16)
N5···H62.580 (12)H3···C1ix3.058 (16)
N5···H3Niii1.920 (13)H3N···N5i1.920 (13)
C1···N22.9609 (17)H3N···C7i2.992 (13)
C3···C7v3.5793 (19)H3N···C8i2.896 (13)
C3···C8v3.576 (2)H3N···H6i2.431 (18)
C4···C7v3.3206 (18)H4···H62.572 (19)
C5···C5vi3.4963 (16)H6···N52.580 (12)
C6···C6v3.5119 (16)H6···H42.572 (19)
C7···C3v3.5793 (19)H6···H3Niii2.431 (18)
C7···C4v3.3206 (18)H8···N4ii2.634 (14)
C8···C3v3.576 (2)H8···C8ii3.083 (14)
C8···N4ii3.4283 (17)
C1—N1—C2124.70 (12)N3—C7—N5109.60 (9)
C1—N1—C5127.37 (11)N4—C8—N5115.42 (11)
C2—N1—C5107.91 (11)N1—C1—H1A109.00
C6—N2—C7117.80 (9)N1—C1—H1B109.00
N4—N3—C7110.62 (8)N1—C1—H1C109.00
N3—N4—C8101.73 (10)H1A—C1—H1B109.00
C7—N5—C8102.63 (9)H1A—C1—H1C109.00
N4—N3—H3N121.5 (8)H1B—C1—H1C109.00
C7—N3—H3N127.8 (8)N1—C2—H2120.5 (10)
N1—C2—C3109.66 (14)C3—C2—H2129.7 (10)
C2—C3—C4107.35 (14)C2—C3—H3125.4 (10)
C3—C4—C5107.93 (13)C4—C3—H3127.2 (10)
N1—C5—C4107.15 (11)C3—C4—H4128.1 (9)
C4—C5—C6126.33 (11)C5—C4—H4124.0 (9)
N1—C5—C6126.48 (10)N2—C6—H6121.6 (7)
N2—C6—C5124.85 (11)C5—C6—H6113.5 (7)
N2—C7—N3119.75 (9)N4—C8—H8122.1 (9)
N2—C7—N5130.62 (9)N5—C8—H8122.5 (9)
C1—N1—C5—C4177.86 (12)C7—N3—N4—C80.72 (13)
C1—N1—C2—C3178.37 (12)N3—N4—C8—N50.41 (15)
C5—N1—C2—C30.21 (16)C8—N5—C7—N30.52 (13)
C2—N1—C5—C6177.44 (12)C8—N5—C7—N2178.36 (12)
C2—N1—C5—C40.23 (14)C7—N5—C8—N40.06 (15)
C1—N1—C5—C64.47 (19)N1—C2—C3—C40.57 (17)
C6—N2—C7—N518.65 (18)C2—C3—C4—C50.70 (17)
C6—N2—C7—N3163.70 (11)C3—C4—C5—C6177.10 (12)
C7—N2—C6—C5179.40 (11)C3—C4—C5—N10.57 (15)
N4—N3—C7—N50.82 (14)C4—C5—C6—N2172.36 (12)
N4—N3—C7—N2178.93 (10)N1—C5—C6—N24.88 (19)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x, y+1, z+1; (vii) x, y+3/2, z1/2; (viii) x, y+1/2, z+1/2; (ix) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···N5i0.91 (1)1.92 (1)2.8225 (12)171 (1)
C1—H1B···N20.96002.61002.9609 (17)102.00
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H9N5
Mr175.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.2519 (3), 12.8616 (6), 9.7445 (4)
β (°) 101.917 (2)
V3)889.29 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.20 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.976, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10203, 2212, 1651
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.107, 1.03
No. of reflections2212
No. of parameters136
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···N5i0.910 (13)1.920 (13)2.8225 (12)171.3 (12)
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.

References

First citationArfan, M., Tahir, M. N., Khan, R. & Iqbal, M. S. (2008). Acta Cryst. E64, o1505.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds