organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium tri­fluoro­[(Z)-3-(oxan-2-yl­­oxy)prop-1-en-1-yl]borate monohydrate

aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo-SP, Brazil, and cInstituto de Química, Universidade Federal do Rio de Janeiro-RJ, Brazil
*Correspondence e-mail: julio@power.ufscar.br

(Received 8 December 2008; accepted 16 December 2008; online 24 December 2008)

The title compound, K+·C8H13BF3O2·H2O, which was obtained from the reaction of a modified form of Z-vinylic telluride via a transmetalation reaction with n-BuLi, crystallizes as K+ and C8H13BF3O2 ions along with a water mol­ecule. The K+ cation is surrounded by four anions, making close contacts with six F atoms at 2.659 (3)–2.906 (3) Å and with two O atoms at 2.806 (3) and 2.921 (3) Å in a distorted bicapped trigonal-prismatic geometry.

Related literature

For related structures, see: Stefani et al. (2006[Stefani, H. A., Cella, R., Zukerman-Schpector, J. & Caracelli, I. (2006). Z. Krist. New Cryst. Struct. 221, 167-168.]); Caracelli et al. (2007[Caracelli, I., Stefani, H. A., Vieira, A. S., Machado, M. M. P. & Zukerman-Schpector, J. (2007). Z. Krist. New Cryst. Struct. 222, 345-346.]); Zukerman-Schpector et al. (2008[Zukerman-Schpector, J., Guadagnin, R. C., Stefani, H. A. & Visentin, L. do C. (2008). Acta Cryst. E64, m1525.]). For related literature, see: Vieira et al. (2008[Vieira, A. S., Fiorante, P. F., Zukerman-Schpector, J., Alves, D., Botteselle, G. V. & Stefani, H. A. (2008). Tetrahedron, 64, 7234-7241.]). For the synthesis, see: Bernady et al. (1979[Bernady, K. F., Floyd, M. B., Poletto, J. F. & Weiss, M. J. (1979). J. Org. Chem. 44, 1438-1447.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C8H13BF3O2·H2O

  • Mr = 266.11

  • Orthorhombic, P c a 21

  • a = 8.5210 (7) Å

  • b = 17.056 (1) Å

  • c = 8.6318 (7) Å

  • V = 1254.50 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 291 (2) K

  • 0.27 × 0.10 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.888, Tmax = 0.982

  • 11914 measured reflections

  • 2324 independent reflections

  • 1604 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.096

  • S = 1.03

  • 2324 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1064 Friedel pairs

  • Flack parameter: 0.07 (9)

Data collection: COLLECT (Nonius, 1998[Nonius (1998) COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: PHICHI (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVAL-14 (CCD) (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Organic compounds of tellurium, such as Z-vinylic tellurides, are important synthetic precursors of organometallic molecules and organic salts and can be useful in the synthesis of new potassium vinyl trifluoroborate salts. Organotrifluoroborates represent an alternative to boronic acids, boronate esters, and organoboranes for use in the Suzuki-Miyaura reaction and other transition-metal-catalyzed cross-coupling reactions (Vieira et al. 2008). The title compound (I), Fig. 1, was studied as part of an ongoing systematic synthesis of trifluoroborate compounds (Stefani et al.(2006), Caracelli et al. (2007); Zukerman-Schpector et al. (2008)). The oxane ring is in a slightly distorted chair conformation, the ring-puckering parameters (Cremer & Pople, 1975) are q2 = 0.033 (6) Å, q3 = 0.555 (6) Å, Q = 0.556 (7)°, θ = 3.4 (6)° and ϕ2 = 156 (11)°. The geometry around the K+ ion can be described as a distorted bicaped trigonal prism as shown in Figure 2. Besides the K+ interactions,the molecules are connected via C3···O2i = 3.600 (6) Å, C3—H3A···O2i = 132° (i = -x + 3/2, y, z + 1/2) contact.

Related literature top

For related structures, see: Stefani et al. (2006); Caracelli et al. (2007); Zukerman-Schpector et al. (2008). For related literature, see: Vieira et al. (2008). For the synthesis, see: Bernady et al. (1979). For ring puckering analysis, see: Cremer & Pople (1975).

Experimental top

The starting propargylic alcohol was protected with dihydropyran (Bernady et al. 1979) and via hydrotelluration of the alkyne transformed in the correspondent Z-vinylic telluride. Next, nBuLi (0.8 mmol) was added dropwise at 203 K to a solution of the Z-vinylic telluride (1 mmol) in Et2O (6 ml). The bath temperature was raised to 253 K. After 20 minutes B(OiPr)3 (1.0 mmol) was added at 233 K. After 1 h, an aqueous solution of KHF2 (4 mmol in 10 ml of water) was added to the reaction mixture. Then, the solvent and water were eliminated by evaporation. To the obtained solid hot acetone was added and the bulk reactional was filtered and dried, yielding 24% of (Z)-potassium vinyltrifluoroborate salt. Single crystals were obtained by slow evaporation from Et2O.

Refinement top

The H atoms were refined in the riding-model approximation with Uiso(H) = 1.2Ueq, and with C—H = 0.93 - 0.97 Å. The water molecule H atoms were refined riding in the position found in a difference map.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: PHICHI (Duisenberg et al., 2000); data reduction: EVAL14 (CCD) (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. The bicapped trigonal prism around the K+ ion. Symmetry operations: a = 1 - x, -y, z - 1/2; b = 1/2 - x, y, z - 1/2; c = x - 1/2, -y, z.
Potassium trifluoro[(Z)-3-(oxan-2-yloxy)prop-1-en-1-yl]borate monohydrate top
Crystal data top
K+·C8H13BF3O2·H2OF(000) = 552
Mr = 266.11Dx = 1.409 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 9536 reflections
a = 8.5210 (7) Åθ = 2.3–21.8°
b = 17.056 (1) ŵ = 0.45 mm1
c = 8.6318 (7) ÅT = 291 K
V = 1254.50 (16) Å3Plate, colourless
Z = 40.27 × 0.10 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
2324 independent reflections
Radiation source: fine-focus sealed tube1604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 25.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1010
Tmin = 0.888, Tmax = 0.982k = 2020
11914 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0438P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2324 reflectionsΔρmax = 0.23 e Å3
145 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (Flack, 1983), 1064 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (9)
Crystal data top
K+·C8H13BF3O2·H2OV = 1254.50 (16) Å3
Mr = 266.11Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 8.5210 (7) ŵ = 0.45 mm1
b = 17.056 (1) ÅT = 291 K
c = 8.6318 (7) Å0.27 × 0.10 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
2324 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1604 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.982Rint = 0.074
11914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.23 e Å3
S = 1.03Δρmin = 0.19 e Å3
2324 reflectionsAbsolute structure: Flack (Flack, 1983), 1064 Friedel pairs
145 parametersAbsolute structure parameter: 0.07 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K0.24966 (12)0.03852 (4)0.49817 (17)0.04270 (18)
B0.3952 (4)0.1021 (2)0.7488 (8)0.0421 (8)
F10.2390 (2)0.07214 (10)0.7452 (5)0.0524 (4)
F20.4623 (4)0.08281 (14)0.6069 (3)0.0627 (8)
F30.4710 (3)0.05485 (16)0.8649 (3)0.0714 (9)
O10.5509 (3)0.32819 (14)0.5091 (4)0.0665 (8)
O20.5808 (3)0.28932 (14)0.2496 (5)0.0675 (7)
O30.3979 (3)0.12040 (12)0.7392 (4)0.0516 (6)
H1O30.43740.10600.82520.062*
H2O30.40060.17110.73750.062*
C10.4036 (5)0.1914 (2)0.7978 (4)0.0585 (12)
H10.35810.20260.89320.070*
C20.4642 (5)0.2527 (2)0.7267 (6)0.0614 (11)
H20.45630.30100.77580.074*
C30.5447 (6)0.2502 (3)0.5726 (5)0.0673 (12)
H3A0.65020.22970.58460.081*
H3B0.48770.21590.50280.081*
C40.6461 (6)0.3325 (2)0.3741 (6)0.0677 (12)
H40.74990.31100.39820.081*
C60.4336 (7)0.3192 (3)0.1981 (7)0.101 (2)
H6A0.35850.31690.28240.121*
H6B0.39440.28680.11430.121*
C70.4488 (8)0.4031 (4)0.1427 (8)0.114 (2)
H7A0.34680.42290.11150.137*
H7B0.51830.40540.05380.137*
C80.5146 (8)0.4530 (3)0.2740 (10)0.100 (2)
H8A0.53400.50590.23720.120*
H8B0.43920.45580.35800.120*
C90.6638 (8)0.4176 (3)0.3308 (7)0.0904 (17)
H9A0.69990.44670.42050.108*
H9B0.74310.42230.25070.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.0363 (3)0.0543 (4)0.0374 (3)0.0017 (5)0.0004 (3)0.0036 (7)
B0.0300 (17)0.053 (2)0.0437 (18)0.0018 (16)0.007 (3)0.001 (3)
F10.0330 (9)0.0674 (10)0.0569 (10)0.0045 (9)0.0018 (15)0.005 (2)
F20.0665 (17)0.0580 (15)0.0635 (15)0.0067 (13)0.0313 (13)0.0131 (13)
F30.0493 (17)0.0804 (18)0.085 (2)0.0009 (15)0.0228 (15)0.0288 (16)
O10.080 (2)0.0450 (14)0.0746 (19)0.0016 (14)0.010 (2)0.0035 (17)
O20.0800 (18)0.0491 (14)0.0735 (16)0.0009 (14)0.004 (2)0.002 (2)
O30.0605 (14)0.0446 (13)0.0497 (13)0.0003 (11)0.0093 (17)0.0057 (18)
C10.073 (3)0.056 (3)0.046 (2)0.007 (2)0.0120 (19)0.0077 (17)
C20.066 (2)0.049 (2)0.069 (3)0.0020 (19)0.008 (3)0.019 (2)
C30.079 (3)0.053 (3)0.070 (3)0.003 (2)0.015 (2)0.003 (2)
C40.060 (3)0.057 (3)0.086 (3)0.008 (2)0.014 (2)0.005 (3)
C60.093 (4)0.108 (4)0.101 (5)0.014 (3)0.016 (3)0.008 (3)
C70.115 (6)0.105 (5)0.123 (6)0.024 (4)0.017 (4)0.034 (5)
C80.133 (5)0.053 (3)0.113 (6)0.023 (3)0.015 (4)0.012 (3)
C90.106 (5)0.067 (3)0.098 (4)0.022 (3)0.021 (3)0.004 (3)
Geometric parameters (Å, º) top
B—F11.426 (4)C3—H3B0.9700
B—F21.392 (6)C4—C91.507 (6)
B—F31.439 (6)C4—H40.9800
B—C11.582 (5)C6—C71.514 (8)
O1—C41.422 (5)C6—H6A0.9700
O1—C31.439 (5)C6—H6B0.9700
O2—C41.417 (6)C7—C81.525 (10)
O2—C61.425 (6)C7—H7A0.9700
O3—H1O30.8518C7—H7B0.9700
O3—H2O30.8651C8—C91.490 (8)
C1—C21.317 (6)C8—H8A0.9700
C1—H10.9300C8—H8B0.9700
C2—C31.497 (7)C9—H9A0.9700
C2—H20.9300C9—H9B0.9700
C3—H3A0.9700
F2—B—F1106.2 (4)C9—C4—H4108.8
F2—B—F3107.2 (3)O2—C6—C7111.2 (4)
F1—B—F3103.5 (3)O2—C6—H6A109.4
F2—B—C1116.4 (3)C7—C6—H6A109.4
F1—B—C1113.2 (3)O2—C6—H6B109.4
F3—B—C1109.4 (4)C7—C6—H6B109.4
C4—O1—C3112.3 (3)H6A—C6—H6B108.0
C4—O2—C6113.4 (4)C6—C7—C8108.9 (5)
H1O3—O3—H2O3107.0C6—C7—H7A109.9
C2—C1—B131.1 (4)C8—C7—H7A109.9
C2—C1—H1114.5C6—C7—H7B109.9
B—C1—H1114.5C8—C7—H7B109.9
C1—C2—C3124.8 (4)H7A—C7—H7B108.3
C1—C2—H2117.6C9—C8—C7109.4 (5)
C3—C2—H2117.6C9—C8—H8A109.8
O1—C3—C2109.2 (3)C7—C8—H8A109.8
O1—C3—H3A109.8C9—C8—H8B109.8
C2—C3—H3A109.8C7—C8—H8B109.8
O1—C3—H3B109.8H8A—C8—H8B108.2
C2—C3—H3B109.8C8—C9—C4112.7 (5)
H3A—C3—H3B108.3C8—C9—H9A109.0
O2—C4—O1111.8 (3)C4—C9—H9A109.0
O2—C4—C9110.6 (4)C8—C9—H9B109.0
O1—C4—C9108.1 (4)C4—C9—H9B109.0
O2—C4—H4108.8H9A—C9—H9B107.8
O1—C4—H4108.8
F2—B—C1—C20.1 (7)C3—O1—C4—O266.2 (5)
F1—B—C1—C2123.4 (6)C3—O1—C4—C9171.9 (4)
F3—B—C1—C2121.8 (5)C4—O2—C6—C760.0 (6)
B—C1—C2—C30.3 (8)O2—C6—C7—C857.6 (7)
C4—O1—C3—C2171.2 (4)C6—C7—C8—C954.2 (7)
C1—C2—C3—O1161.9 (4)C7—C8—C9—C453.4 (7)
C6—O2—C4—O163.8 (5)O2—C4—C9—C853.8 (6)
C6—O2—C4—C956.6 (5)O1—C4—C9—C868.9 (6)

Experimental details

Crystal data
Chemical formulaK+·C8H13BF3O2·H2O
Mr266.11
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)291
a, b, c (Å)8.5210 (7), 17.056 (1), 8.6318 (7)
V3)1254.50 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.27 × 0.10 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.888, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
11914, 2324, 1604
Rint0.074
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 1.03
No. of reflections2324
No. of parameters145
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.19
Absolute structureFlack (Flack, 1983), 1064 Friedel pairs
Absolute structure parameter0.07 (9)

Computer programs: COLLECT (Nonius, 1998), PHICHI (Duisenberg et al., 2000), EVAL14 (CCD) (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

We thank FAPESP (grants 07/59404–2 to HAS and 08/02531–5 to JZ-S), CNPq (grants 300613/2007 to HAS and 307121/2006–0 to JZ-S) and CAPES for financial support. The LDRX (Laboratório de Difração de Raios X), UFF-RJ, for the use of the diffractometer.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernady, K. F., Floyd, M. B., Poletto, J. F. & Weiss, M. J. (1979). J. Org. Chem. 44, 1438–1447.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaracelli, I., Stefani, H. A., Vieira, A. S., Machado, M. M. P. & Zukerman-Schpector, J. (2007). Z. Krist. New Cryst. Struct. 222, 345–346.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (1998) COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStefani, H. A., Cella, R., Zukerman-Schpector, J. & Caracelli, I. (2006). Z. Krist. New Cryst. Struct. 221, 167–168.  CAS Google Scholar
First citationVieira, A. S., Fiorante, P. F., Zukerman-Schpector, J., Alves, D., Botteselle, G. V. & Stefani, H. A. (2008). Tetrahedron, 64, 7234–7241.  Web of Science CSD CrossRef CAS Google Scholar
First citationZukerman-Schpector, J., Guadagnin, R. C., Stefani, H. A. & Visentin, L. do C. (2008). Acta Cryst. E64, m1525.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds