organic compounds
Potassium trifluoro[(Z)-3-(oxan-2-yloxy)prop-1-en-1-yl]borate monohydrate
aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo-SP, Brazil, and cInstituto de Química, Universidade Federal do Rio de Janeiro-RJ, Brazil
*Correspondence e-mail: julio@power.ufscar.br
The title compound, K+·C8H13BF3O2−·H2O, which was obtained from the reaction of a modified form of Z-vinylic telluride via a transmetalation reaction with n-BuLi, crystallizes as K+ and C8H13BF3O2− ions along with a water molecule. The K+ cation is surrounded by four anions, making close contacts with six F atoms at 2.659 (3)–2.906 (3) Å and with two O atoms at 2.806 (3) and 2.921 (3) Å in a distorted bicapped trigonal-prismatic geometry.
Related literature
For related structures, see: Stefani et al. (2006); Caracelli et al. (2007); Zukerman-Schpector et al. (2008). For related literature, see: Vieira et al. (2008). For the synthesis, see: Bernady et al. (1979). For ring puckering analysis, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell PHICHI (Duisenberg et al., 2000); data reduction: EVAL-14 (CCD) (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808042931/ng2525sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808042931/ng2525Isup2.hkl
The starting propargylic alcohol was protected with dihydropyran (Bernady et al. 1979) and via hydrotelluration of the alkyne transformed in the correspondent Z-vinylic telluride. Next, nBuLi (0.8 mmol) was added dropwise at 203 K to a solution of the Z-vinylic telluride (1 mmol) in Et2O (6 ml). The bath temperature was raised to 253 K. After 20 minutes B(OiPr)3 (1.0 mmol) was added at 233 K. After 1 h, an aqueous solution of KHF2 (4 mmol in 10 ml of water) was added to the reaction mixture. Then, the solvent and water were eliminated by evaporation. To the obtained solid hot acetone was added and the bulk reactional was filtered and dried, yielding 24% of (Z)-potassium vinyltrifluoroborate salt. Single crystals were obtained by slow evaporation from Et2O.
The H atoms were refined in the riding-model approximation with Uiso(H) = 1.2Ueq, and with C—H = 0.93 - 0.97 Å. The water molecule H atoms were refined riding in the position found in a difference map.
Data collection: COLLECT (Nonius, 1998); cell
PHICHI (Duisenberg et al., 2000); data reduction: EVAL14 (CCD) (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).K+·C8H13BF3O2−·H2O | F(000) = 552 |
Mr = 266.11 | Dx = 1.409 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 9536 reflections |
a = 8.5210 (7) Å | θ = 2.3–21.8° |
b = 17.056 (1) Å | µ = 0.45 mm−1 |
c = 8.6318 (7) Å | T = 291 K |
V = 1254.50 (16) Å3 | Plate, colourless |
Z = 4 | 0.27 × 0.10 × 0.04 mm |
Nonius KappaCCD diffractometer | 2324 independent reflections |
Radiation source: fine-focus sealed tube | 1604 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.074 |
ϕ and ω scans | θmax = 25.5°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −10→10 |
Tmin = 0.888, Tmax = 0.982 | k = −20→20 |
11914 measured reflections | l = −10→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0438P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2324 reflections | Δρmax = 0.23 e Å−3 |
145 parameters | Δρmin = −0.19 e Å−3 |
1 restraint | Absolute structure: Flack (Flack, 1983), 1064 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.07 (9) |
K+·C8H13BF3O2−·H2O | V = 1254.50 (16) Å3 |
Mr = 266.11 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 8.5210 (7) Å | µ = 0.45 mm−1 |
b = 17.056 (1) Å | T = 291 K |
c = 8.6318 (7) Å | 0.27 × 0.10 × 0.04 mm |
Nonius KappaCCD diffractometer | 2324 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 1604 reflections with I > 2σ(I) |
Tmin = 0.888, Tmax = 0.982 | Rint = 0.074 |
11914 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.096 | Δρmax = 0.23 e Å−3 |
S = 1.03 | Δρmin = −0.19 e Å−3 |
2324 reflections | Absolute structure: Flack (Flack, 1983), 1064 Friedel pairs |
145 parameters | Absolute structure parameter: 0.07 (9) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
K | 0.24966 (12) | −0.03852 (4) | 0.49817 (17) | 0.04270 (18) | |
B | 0.3952 (4) | 0.1021 (2) | 0.7488 (8) | 0.0421 (8) | |
F1 | 0.2390 (2) | 0.07214 (10) | 0.7452 (5) | 0.0524 (4) | |
F2 | 0.4623 (4) | 0.08281 (14) | 0.6069 (3) | 0.0627 (8) | |
F3 | 0.4710 (3) | 0.05485 (16) | 0.8649 (3) | 0.0714 (9) | |
O1 | 0.5509 (3) | 0.32819 (14) | 0.5091 (4) | 0.0665 (8) | |
O2 | 0.5808 (3) | 0.28932 (14) | 0.2496 (5) | 0.0675 (7) | |
O3 | 0.3979 (3) | −0.12040 (12) | 0.7392 (4) | 0.0516 (6) | |
H1O3 | 0.4374 | −0.1060 | 0.8252 | 0.062* | |
H2O3 | 0.4006 | −0.1711 | 0.7375 | 0.062* | |
C1 | 0.4036 (5) | 0.1914 (2) | 0.7978 (4) | 0.0585 (12) | |
H1 | 0.3581 | 0.2026 | 0.8932 | 0.070* | |
C2 | 0.4642 (5) | 0.2527 (2) | 0.7267 (6) | 0.0614 (11) | |
H2 | 0.4563 | 0.3010 | 0.7758 | 0.074* | |
C3 | 0.5447 (6) | 0.2502 (3) | 0.5726 (5) | 0.0673 (12) | |
H3A | 0.6502 | 0.2297 | 0.5846 | 0.081* | |
H3B | 0.4877 | 0.2159 | 0.5028 | 0.081* | |
C4 | 0.6461 (6) | 0.3325 (2) | 0.3741 (6) | 0.0677 (12) | |
H4 | 0.7499 | 0.3110 | 0.3982 | 0.081* | |
C6 | 0.4336 (7) | 0.3192 (3) | 0.1981 (7) | 0.101 (2) | |
H6A | 0.3585 | 0.3169 | 0.2824 | 0.121* | |
H6B | 0.3944 | 0.2868 | 0.1143 | 0.121* | |
C7 | 0.4488 (8) | 0.4031 (4) | 0.1427 (8) | 0.114 (2) | |
H7A | 0.3468 | 0.4229 | 0.1115 | 0.137* | |
H7B | 0.5183 | 0.4054 | 0.0538 | 0.137* | |
C8 | 0.5146 (8) | 0.4530 (3) | 0.2740 (10) | 0.100 (2) | |
H8A | 0.5340 | 0.5059 | 0.2372 | 0.120* | |
H8B | 0.4392 | 0.4558 | 0.3580 | 0.120* | |
C9 | 0.6638 (8) | 0.4176 (3) | 0.3308 (7) | 0.0904 (17) | |
H9A | 0.6999 | 0.4467 | 0.4205 | 0.108* | |
H9B | 0.7431 | 0.4223 | 0.2507 | 0.108* |
U11 | U22 | U33 | U12 | U13 | U23 | |
K | 0.0363 (3) | 0.0543 (4) | 0.0374 (3) | −0.0017 (5) | 0.0004 (3) | 0.0036 (7) |
B | 0.0300 (17) | 0.053 (2) | 0.0437 (18) | −0.0018 (16) | 0.007 (3) | −0.001 (3) |
F1 | 0.0330 (9) | 0.0674 (10) | 0.0569 (10) | −0.0045 (9) | 0.0018 (15) | −0.005 (2) |
F2 | 0.0665 (17) | 0.0580 (15) | 0.0635 (15) | −0.0067 (13) | 0.0313 (13) | −0.0131 (13) |
F3 | 0.0493 (17) | 0.0804 (18) | 0.085 (2) | −0.0009 (15) | −0.0228 (15) | 0.0288 (16) |
O1 | 0.080 (2) | 0.0450 (14) | 0.0746 (19) | 0.0016 (14) | 0.010 (2) | 0.0035 (17) |
O2 | 0.0800 (18) | 0.0491 (14) | 0.0735 (16) | −0.0009 (14) | 0.004 (2) | −0.002 (2) |
O3 | 0.0605 (14) | 0.0446 (13) | 0.0497 (13) | 0.0003 (11) | 0.0093 (17) | −0.0057 (18) |
C1 | 0.073 (3) | 0.056 (3) | 0.046 (2) | −0.007 (2) | 0.0120 (19) | −0.0077 (17) |
C2 | 0.066 (2) | 0.049 (2) | 0.069 (3) | −0.0020 (19) | 0.008 (3) | −0.019 (2) |
C3 | 0.079 (3) | 0.053 (3) | 0.070 (3) | 0.003 (2) | 0.015 (2) | 0.003 (2) |
C4 | 0.060 (3) | 0.057 (3) | 0.086 (3) | −0.008 (2) | 0.014 (2) | 0.005 (3) |
C6 | 0.093 (4) | 0.108 (4) | 0.101 (5) | −0.014 (3) | −0.016 (3) | −0.008 (3) |
C7 | 0.115 (6) | 0.105 (5) | 0.123 (6) | 0.024 (4) | −0.017 (4) | 0.034 (5) |
C8 | 0.133 (5) | 0.053 (3) | 0.113 (6) | 0.023 (3) | 0.015 (4) | 0.012 (3) |
C9 | 0.106 (5) | 0.067 (3) | 0.098 (4) | −0.022 (3) | 0.021 (3) | 0.004 (3) |
B—F1 | 1.426 (4) | C3—H3B | 0.9700 |
B—F2 | 1.392 (6) | C4—C9 | 1.507 (6) |
B—F3 | 1.439 (6) | C4—H4 | 0.9800 |
B—C1 | 1.582 (5) | C6—C7 | 1.514 (8) |
O1—C4 | 1.422 (5) | C6—H6A | 0.9700 |
O1—C3 | 1.439 (5) | C6—H6B | 0.9700 |
O2—C4 | 1.417 (6) | C7—C8 | 1.525 (10) |
O2—C6 | 1.425 (6) | C7—H7A | 0.9700 |
O3—H1O3 | 0.8518 | C7—H7B | 0.9700 |
O3—H2O3 | 0.8651 | C8—C9 | 1.490 (8) |
C1—C2 | 1.317 (6) | C8—H8A | 0.9700 |
C1—H1 | 0.9300 | C8—H8B | 0.9700 |
C2—C3 | 1.497 (7) | C9—H9A | 0.9700 |
C2—H2 | 0.9300 | C9—H9B | 0.9700 |
C3—H3A | 0.9700 | ||
F2—B—F1 | 106.2 (4) | C9—C4—H4 | 108.8 |
F2—B—F3 | 107.2 (3) | O2—C6—C7 | 111.2 (4) |
F1—B—F3 | 103.5 (3) | O2—C6—H6A | 109.4 |
F2—B—C1 | 116.4 (3) | C7—C6—H6A | 109.4 |
F1—B—C1 | 113.2 (3) | O2—C6—H6B | 109.4 |
F3—B—C1 | 109.4 (4) | C7—C6—H6B | 109.4 |
C4—O1—C3 | 112.3 (3) | H6A—C6—H6B | 108.0 |
C4—O2—C6 | 113.4 (4) | C6—C7—C8 | 108.9 (5) |
H1O3—O3—H2O3 | 107.0 | C6—C7—H7A | 109.9 |
C2—C1—B | 131.1 (4) | C8—C7—H7A | 109.9 |
C2—C1—H1 | 114.5 | C6—C7—H7B | 109.9 |
B—C1—H1 | 114.5 | C8—C7—H7B | 109.9 |
C1—C2—C3 | 124.8 (4) | H7A—C7—H7B | 108.3 |
C1—C2—H2 | 117.6 | C9—C8—C7 | 109.4 (5) |
C3—C2—H2 | 117.6 | C9—C8—H8A | 109.8 |
O1—C3—C2 | 109.2 (3) | C7—C8—H8A | 109.8 |
O1—C3—H3A | 109.8 | C9—C8—H8B | 109.8 |
C2—C3—H3A | 109.8 | C7—C8—H8B | 109.8 |
O1—C3—H3B | 109.8 | H8A—C8—H8B | 108.2 |
C2—C3—H3B | 109.8 | C8—C9—C4 | 112.7 (5) |
H3A—C3—H3B | 108.3 | C8—C9—H9A | 109.0 |
O2—C4—O1 | 111.8 (3) | C4—C9—H9A | 109.0 |
O2—C4—C9 | 110.6 (4) | C8—C9—H9B | 109.0 |
O1—C4—C9 | 108.1 (4) | C4—C9—H9B | 109.0 |
O2—C4—H4 | 108.8 | H9A—C9—H9B | 107.8 |
O1—C4—H4 | 108.8 | ||
F2—B—C1—C2 | 0.1 (7) | C3—O1—C4—O2 | 66.2 (5) |
F1—B—C1—C2 | −123.4 (6) | C3—O1—C4—C9 | −171.9 (4) |
F3—B—C1—C2 | 121.8 (5) | C4—O2—C6—C7 | 60.0 (6) |
B—C1—C2—C3 | −0.3 (8) | O2—C6—C7—C8 | −57.6 (7) |
C4—O1—C3—C2 | 171.2 (4) | C6—C7—C8—C9 | 54.2 (7) |
C1—C2—C3—O1 | 161.9 (4) | C7—C8—C9—C4 | −53.4 (7) |
C6—O2—C4—O1 | 63.8 (5) | O2—C4—C9—C8 | 53.8 (6) |
C6—O2—C4—C9 | −56.6 (5) | O1—C4—C9—C8 | −68.9 (6) |
Experimental details
Crystal data | |
Chemical formula | K+·C8H13BF3O2−·H2O |
Mr | 266.11 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 291 |
a, b, c (Å) | 8.5210 (7), 17.056 (1), 8.6318 (7) |
V (Å3) | 1254.50 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.45 |
Crystal size (mm) | 0.27 × 0.10 × 0.04 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.888, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11914, 2324, 1604 |
Rint | 0.074 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.096, 1.03 |
No. of reflections | 2324 |
No. of parameters | 145 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.19 |
Absolute structure | Flack (Flack, 1983), 1064 Friedel pairs |
Absolute structure parameter | 0.07 (9) |
Computer programs: COLLECT (Nonius, 1998), PHICHI (Duisenberg et al., 2000), EVAL14 (CCD) (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
We thank FAPESP (grants 07/59404–2 to HAS and 08/02531–5 to JZ-S), CNPq (grants 300613/2007 to HAS and 307121/2006–0 to JZ-S) and CAPES for financial support. The LDRX (Laboratório de Difração de Raios X), UFF-RJ, for the use of the diffractometer.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernady, K. F., Floyd, M. B., Poletto, J. F. & Weiss, M. J. (1979). J. Org. Chem. 44, 1438–1447. CrossRef CAS Web of Science Google Scholar
Bruker (2006). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Caracelli, I., Stefani, H. A., Vieira, A. S., Machado, M. M. P. & Zukerman-Schpector, J. (2007). Z. Krist. New Cryst. Struct. 222, 345–346. CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Nonius (1998) COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stefani, H. A., Cella, R., Zukerman-Schpector, J. & Caracelli, I. (2006). Z. Krist. New Cryst. Struct. 221, 167–168. CAS Google Scholar
Vieira, A. S., Fiorante, P. F., Zukerman-Schpector, J., Alves, D., Botteselle, G. V. & Stefani, H. A. (2008). Tetrahedron, 64, 7234–7241. Web of Science CSD CrossRef CAS Google Scholar
Zukerman-Schpector, J., Guadagnin, R. C., Stefani, H. A. & Visentin, L. do C. (2008). Acta Cryst. E64, m1525. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organic compounds of tellurium, such as Z-vinylic tellurides, are important synthetic precursors of organometallic molecules and organic salts and can be useful in the synthesis of new potassium vinyl trifluoroborate salts. Organotrifluoroborates represent an alternative to boronic acids, boronate esters, and organoboranes for use in the Suzuki-Miyaura reaction and other transition-metal-catalyzed cross-coupling reactions (Vieira et al. 2008). The title compound (I), Fig. 1, was studied as part of an ongoing systematic synthesis of trifluoroborate compounds (Stefani et al.(2006), Caracelli et al. (2007); Zukerman-Schpector et al. (2008)). The oxane ring is in a slightly distorted chair conformation, the ring-puckering parameters (Cremer & Pople, 1975) are q2 = 0.033 (6) Å, q3 = 0.555 (6) Å, Q = 0.556 (7)°, θ = 3.4 (6)° and ϕ2 = 156 (11)°. The geometry around the K+ ion can be described as a distorted bicaped trigonal prism as shown in Figure 2. Besides the K+ interactions,the molecules are connected via C3···O2i = 3.600 (6) Å, C3—H3A···O2i = 132° (i = -x + 3/2, y, z + 1/2) contact.