organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4-Bromo­phen­yl)-3-(3,4,5-tri­meth­oxy­phen­yl)prop-2-en-1-one

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 6 November 2008; accepted 9 December 2008; online 13 December 2008)

In the title compound, C18H17BrO4, the dihedral angle between the 4-bromo­phenyl and 3,4,5-trimethoxy­phenyl rings is 44.18 (6)°. In the crystal structure, the mol­ecules are linked by C—H⋯O and C—H⋯π inter­actions.

Related literature

For background and applications to chalcones, see: Jung et al. (2008[Jung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861-867.]); Patil et al. (2007[Patil, P. S., Chantrapromma, S., Fun, H.-K., Dharmaprakash, S. M. & Babu, H. B. R. (2007). Acta Cryst. E63, o2612.]); Patil & Dharmaprakash (2008[Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451-453.]); Prasad et al. (2008[Prasad, Y. R., Kumar, P. R., Smile, D. J. & Babu, P. A. (2008). ARKIVOC, 11, 266-276.]); Schlogl & Egger (1963[Schlogl, K. & Egger, H. (1963). Monatsh. Chem. 94, 376-392.]). For related structures, see: Ng et al. (2006[Ng, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1570-o1572.]); Patil et al. (2006[Patil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A., Puranik, V. G. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4798-o4799.]; 2007[Patil, P. S., Chantrapromma, S., Fun, H.-K., Dharmaprakash, S. M. & Babu, H. B. R. (2007). Acta Cryst. E63, o2612.]). For on hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17BrO4

  • Mr = 377.22

  • Tetragonal, P 42 /n

  • a = 26.6517 (3) Å

  • c = 4.4238 (1) Å

  • V = 3142.28 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.63 mm−1

  • T = 100.0 (1) K

  • 0.55 × 0.12 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.320, Tmax = 0.726

  • 142737 measured reflections

  • 9693 independent reflections

  • 6638 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.097

  • S = 1.07

  • 9693 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.93 2.52 3.4391 (16) 170
C17—H17C⋯O3ii 0.96 2.52 3.2789 (16) 136
C16—H16BCg1iii 0.96 2.97 3.8080 (14) 147
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y, z-1; (iii) x, y, z+1. Cg1 is the centroid of the C10–C15 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Chalcones are compounds in a family of aromatic ketones with two aromatic groups bridged by an enone linkage (Ar-COCH=CH—Ar) (Schlogl & Egger, 1963). They have a wide range of applications covering non-linear optical (NLO) (Patil & Dharmaprakash, 2008) and electro-active fluorescent materials (Jung et al., 2008) to materials with various biological activities. As an example, 1-(4-hydroxyphenyl)-3-(3,4,5-trimethoxyphenyl)-propenone was found to be able to inhibit growth of some bacteria (Prasad et al., 2008). These interesting properties of chalcones led us to synthesize the title compound so as to study for its antibacterial and cytotoxic activities.

The molecule of the title chalcone derivative (Fig. 1) exists in an E configuration with respect to the C8C9 double bond [1.3428 (17) Å] with torsion angle C7–C8–C9–C10 = -173.04 (12)°. The whole molecule is not planar as the interplanar angle between 4-bromophenyl and 3,4,5-trimethoxyphenyl rings is 44.18 (6)°. The propenone unit (C7—C9/O1) is nearly planar with the torsion angle O1–C7–C8–C9 = 3.4 (2)°. Atoms O1, C6, C7, C8 and C9 lie on the same plane with the most deviation of -0.018 (1) Å for atom C8. The mean plane through O1/C6/C7/C8/C9 makes interplanar angles of 30.82 (7)° and 13.37 (7)° with the planes of 4-bromophenyl and 3,4,5-trimethoxyphenyl rings, respectively. The three methoxy groups of 3,4,5-trimethoxyphenyl unit have three difference orientations: one methoxy group (at atom C14 position) is co-planar with the attached benzene ring with torsion angle C18–O4–C14–C15 = 0.71 (17)° whereas the one at atom C12 position is twisted with the torsion angle C16–O2–C12–C11 = 10.38 (16)° and one is (+)-syn-clinally attached at atom C13 with the torsion angle C17–O3–C13—C14 = 74.48 (14)°. The bond distances are of normal values (Allen et al., 1987) and are comparable with the closely related structures (Ng et al., 2006; Patil et al., 2006; 2007).

In the crystal packing (Fig. 2), the molecules are linked by weak C11—H11A···O1 intermolcular interactions (Table 1) into cyclic centrosymmetric R22(14) dimers (Bernstein et al., 1995). These dimers are stacked along the c axis (Fig. 2) and molecules within the stacks are interlinked by weak C17—H17C···O3 intermolecular interactions. The crystal is stabilized by weak C—H···O interactions (Table 1) and a C—H···π interaction (C16—H16B···Cg1 = 3.8080 (14) Å), where Cg1 is the centroid of the C10–C15 ring.

Related literature top

For background and applications to chalcones, see: Jung et al. (2008); Patil et al. (2007); Patil & Dharmaprakash (2008); Prasad et al. (2008); Schlogl & Egger (1963). For related structures, see: Ng et al. (2006); Patil et al. (2006; 2007). For on hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the C10–C15 ring.

Experimental top

The title compound was synthesized by the condensation of 3,4,5-trimethoxybenzaldehyde (0.4 g, 2 mmol) with 4-bromoacetophenone (0.4 g, 2 mmol) in ethanol (50 ml) in the presence of 30% NaOH(aq) (10 ml). After stirring for 4 h, the resulting pale yellow solid appeared and was then collected by filtration, washed with distilled water, dried and purified by repeated recrystallization from acetone. Colorless block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from acetone/methanol (1:1 v/v) by the slow evaporation of the solvent at room temperature over several days, Mp. 403–404 K.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and CH and C—H = 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.64 Å from C12 and the deepest hole is located at 0.24 Å from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing dimers stacked along the c axis. Hydrogen bonds are shown as dashed lines.
(E)-1-(4-Bromophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C18H17BrO4Dx = 1.595 Mg m3
Mr = 377.22Melting point = 403–404 K
Tetragonal, P42/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 4bcCell parameters from 9693 reflections
a = 26.6517 (3) Åθ = 1.1–40.0°
c = 4.4238 (1) ŵ = 2.63 mm1
V = 3142.28 (9) Å3T = 100 K
Z = 8Block, colorless
F(000) = 15360.55 × 0.12 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9693 independent reflections
Radiation source: fine-focus sealed tube6638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 8.33 pixels mm-1θmax = 40.0°, θmin = 1.1°
ω scansh = 4148
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 4844
Tmin = 0.320, Tmax = 0.726l = 77
142737 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.774P]
where P = (Fo2 + 2Fc2)/3
9693 reflections(Δ/σ)max = 0.003
211 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C18H17BrO4Z = 8
Mr = 377.22Mo Kα radiation
Tetragonal, P42/nµ = 2.63 mm1
a = 26.6517 (3) ÅT = 100 K
c = 4.4238 (1) Å0.55 × 0.12 × 0.12 mm
V = 3142.28 (9) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9693 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6638 reflections with I > 2σ(I)
Tmin = 0.320, Tmax = 0.726Rint = 0.062
142737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.07Δρmax = 0.71 e Å3
9693 reflectionsΔρmin = 0.56 e Å3
211 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cryosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Data up to 2theta = 80 degrees is used in the final refinement

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.332148 (4)0.255150 (5)0.02867 (3)0.01727 (4)
O10.44846 (4)0.45051 (4)0.6855 (3)0.02383 (19)
O20.71139 (3)0.49941 (3)1.1449 (2)0.01727 (16)
O30.76246 (3)0.42445 (3)0.88670 (19)0.01535 (15)
O40.71518 (3)0.34984 (3)0.5922 (2)0.01822 (16)
C10.44558 (5)0.32060 (5)0.4779 (3)0.0174 (2)
H1A0.47290.30970.59080.021*
C20.41434 (4)0.28571 (4)0.3389 (3)0.0167 (2)
H2A0.42010.25150.36250.020*
C30.37450 (4)0.30249 (4)0.1647 (3)0.01471 (19)
C40.36484 (4)0.35344 (4)0.1273 (3)0.01654 (19)
H4A0.33830.36420.00710.020*
C50.39549 (4)0.38788 (4)0.2725 (3)0.01630 (19)
H5A0.38900.42200.25230.020*
C60.43604 (4)0.37201 (5)0.4488 (3)0.01541 (19)
C70.46729 (4)0.41065 (5)0.6074 (3)0.0169 (2)
C80.52093 (4)0.39895 (5)0.6544 (3)0.0179 (2)
H8A0.53370.36890.58110.022*
C90.55163 (4)0.43071 (5)0.8004 (3)0.0167 (2)
H9A0.53690.45860.89010.020*
C100.60602 (4)0.42570 (4)0.8320 (3)0.01485 (19)
C110.63128 (4)0.46298 (4)0.9952 (3)0.01516 (19)
H11A0.61320.48781.09500.018*
C120.68354 (4)0.46278 (4)1.0079 (2)0.01394 (18)
C130.71100 (4)0.42475 (4)0.8662 (3)0.01360 (18)
C140.68527 (4)0.38623 (4)0.7139 (3)0.01435 (18)
C150.63325 (4)0.38689 (4)0.6936 (3)0.01565 (19)
H15A0.61650.36170.58870.019*
C160.68428 (5)0.53482 (5)1.3242 (3)0.0180 (2)
H16A0.70730.55871.40980.027*
H16B0.66700.51751.48370.027*
H16C0.66040.55211.19960.027*
C170.78718 (5)0.43783 (5)0.6083 (3)0.0191 (2)
H17A0.82280.43370.63110.029*
H17B0.77990.47220.56010.029*
H17C0.77540.41650.44850.029*
C180.69070 (5)0.31032 (5)0.4311 (3)0.0198 (2)
H18A0.71530.28660.36170.030*
H18B0.67310.32410.26080.030*
H18C0.66730.29380.56250.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01487 (6)0.01441 (6)0.02252 (6)0.00131 (4)0.00146 (4)0.00109 (4)
O10.0156 (4)0.0196 (4)0.0364 (5)0.0027 (3)0.0021 (4)0.0084 (4)
O20.0142 (4)0.0161 (4)0.0215 (4)0.0018 (3)0.0011 (3)0.0040 (3)
O30.0099 (3)0.0223 (4)0.0138 (3)0.0010 (3)0.0009 (3)0.0006 (3)
O40.0127 (4)0.0169 (4)0.0250 (4)0.0019 (3)0.0016 (3)0.0061 (3)
C10.0148 (5)0.0171 (5)0.0204 (5)0.0026 (4)0.0025 (4)0.0007 (4)
C20.0168 (5)0.0140 (5)0.0193 (5)0.0026 (4)0.0012 (4)0.0000 (4)
C30.0123 (4)0.0145 (5)0.0174 (5)0.0013 (3)0.0011 (4)0.0005 (4)
C40.0132 (5)0.0153 (5)0.0211 (5)0.0012 (4)0.0019 (4)0.0017 (4)
C50.0131 (5)0.0137 (5)0.0221 (5)0.0012 (4)0.0009 (4)0.0008 (4)
C60.0115 (4)0.0165 (5)0.0182 (5)0.0005 (4)0.0003 (4)0.0012 (4)
C70.0120 (5)0.0179 (5)0.0209 (5)0.0003 (4)0.0006 (4)0.0018 (4)
C80.0121 (5)0.0186 (5)0.0231 (5)0.0014 (4)0.0007 (4)0.0040 (4)
C90.0122 (5)0.0158 (5)0.0220 (5)0.0004 (4)0.0002 (4)0.0014 (4)
C100.0115 (4)0.0145 (5)0.0185 (5)0.0001 (3)0.0003 (3)0.0001 (4)
C110.0124 (4)0.0141 (5)0.0190 (5)0.0002 (3)0.0000 (4)0.0001 (4)
C120.0130 (4)0.0133 (4)0.0156 (4)0.0011 (3)0.0005 (3)0.0007 (3)
C130.0110 (4)0.0156 (5)0.0143 (4)0.0000 (3)0.0008 (3)0.0007 (3)
C140.0130 (4)0.0137 (4)0.0163 (4)0.0014 (3)0.0008 (3)0.0003 (4)
C150.0131 (5)0.0147 (5)0.0191 (5)0.0000 (4)0.0013 (4)0.0015 (4)
C160.0196 (5)0.0159 (5)0.0186 (5)0.0003 (4)0.0014 (4)0.0019 (4)
C170.0148 (5)0.0258 (6)0.0168 (5)0.0009 (4)0.0009 (4)0.0024 (4)
C180.0170 (5)0.0165 (5)0.0259 (6)0.0002 (4)0.0004 (4)0.0051 (4)
Geometric parameters (Å, º) top
Br1—C31.8967 (11)C8—H8A0.9300
O1—C71.2247 (15)C9—C101.4624 (16)
O2—C121.3678 (14)C9—H9A0.9300
O2—C161.4292 (15)C10—C111.4007 (16)
O3—C131.3746 (13)C10—C151.4039 (16)
O3—C171.4413 (15)C11—C121.3941 (16)
O4—C141.3658 (14)C11—H11A0.9300
O4—C181.4294 (15)C12—C131.3984 (16)
C1—C21.3916 (17)C13—C141.4065 (16)
C1—C61.3997 (17)C14—C151.3894 (16)
C1—H1A0.9300C15—H15A0.9300
C2—C31.3862 (16)C16—H16A0.9600
C2—H2A0.9300C16—H16B0.9600
C3—C41.3917 (16)C16—H16C0.9600
C4—C51.3866 (17)C17—H17A0.9600
C4—H4A0.9300C17—H17B0.9600
C5—C61.3981 (16)C17—H17C0.9600
C5—H5A0.9300C18—H18A0.9600
C6—C71.4990 (17)C18—H18B0.9600
C7—C81.4777 (16)C18—H18C0.9600
C8—C91.3428 (17)
C12—O2—C16116.30 (9)C12—C11—C10119.88 (11)
C13—O3—C17113.47 (9)C12—C11—H11A120.1
C14—O4—C18116.97 (9)C10—C11—H11A120.1
C2—C1—C6120.31 (11)O2—C12—C11123.86 (11)
C2—C1—H1A119.8O2—C12—C13115.59 (10)
C6—C1—H1A119.8C11—C12—C13120.51 (10)
C3—C2—C1119.24 (11)O3—C13—C12119.79 (10)
C3—C2—H2A120.4O3—C13—C14120.92 (10)
C1—C2—H2A120.4C12—C13—C14119.25 (10)
C2—C3—C4121.50 (11)O4—C14—C15124.47 (10)
C2—C3—Br1119.46 (9)O4—C14—C13115.00 (10)
C4—C3—Br1119.04 (9)C15—C14—C13120.54 (10)
C5—C4—C3118.81 (11)C14—C15—C10119.81 (11)
C5—C4—H4A120.6C14—C15—H15A120.1
C3—C4—H4A120.6C10—C15—H15A120.1
C4—C5—C6120.89 (11)O2—C16—H16A109.5
C4—C5—H5A119.6O2—C16—H16B109.5
C6—C5—H5A119.6H16A—C16—H16B109.5
C5—C6—C1119.21 (11)O2—C16—H16C109.5
C5—C6—C7118.87 (11)H16A—C16—H16C109.5
C1—C6—C7121.89 (11)H16B—C16—H16C109.5
O1—C7—C8122.66 (11)O3—C17—H17A109.5
O1—C7—C6120.02 (11)O3—C17—H17B109.5
C8—C7—C6117.29 (10)H17A—C17—H17B109.5
C9—C8—C7121.62 (11)O3—C17—H17C109.5
C9—C8—H8A119.2H17A—C17—H17C109.5
C7—C8—H8A119.2H17B—C17—H17C109.5
C8—C9—C10126.33 (11)O4—C18—H18A109.5
C8—C9—H9A116.8O4—C18—H18B109.5
C10—C9—H9A116.8H18A—C18—H18B109.5
C11—C10—C15119.93 (10)O4—C18—H18C109.5
C11—C10—C9117.44 (10)H18A—C18—H18C109.5
C15—C10—C9122.55 (10)H18B—C18—H18C109.5
C6—C1—C2—C31.71 (18)C16—O2—C12—C1110.38 (16)
C1—C2—C3—C40.42 (18)C16—O2—C12—C13171.99 (10)
C1—C2—C3—Br1179.40 (9)C10—C11—C12—O2175.59 (11)
C2—C3—C4—C51.05 (18)C10—C11—C12—C131.93 (17)
Br1—C3—C4—C5179.12 (9)C17—O3—C13—C12107.90 (12)
C3—C4—C5—C61.25 (18)C17—O3—C13—C1474.48 (14)
C4—C5—C6—C10.01 (18)O2—C12—C13—O33.79 (15)
C4—C5—C6—C7178.49 (11)C11—C12—C13—O3178.50 (10)
C2—C1—C6—C51.51 (18)O2—C12—C13—C14178.55 (10)
C2—C1—C6—C7176.94 (11)C11—C12—C13—C140.84 (17)
C5—C6—C7—O128.97 (18)C18—O4—C14—C150.71 (17)
C1—C6—C7—O1149.50 (13)C18—O4—C14—C13179.04 (11)
C5—C6—C7—C8149.21 (12)O3—C13—C14—O40.08 (16)
C1—C6—C7—C832.33 (17)C12—C13—C14—O4177.72 (10)
O1—C7—C8—C93.4 (2)O3—C13—C14—C15179.84 (10)
C6—C7—C8—C9178.44 (12)C12—C13—C14—C152.53 (17)
C7—C8—C9—C10173.04 (12)O4—C14—C15—C10178.83 (11)
C8—C9—C10—C11179.68 (12)C13—C14—C15—C101.43 (18)
C8—C9—C10—C153.6 (2)C11—C10—C15—C141.35 (18)
C15—C10—C11—C123.03 (17)C9—C10—C15—C14175.30 (11)
C9—C10—C11—C12173.80 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.932.523.4391 (16)170
C17—H17C···O3ii0.962.523.2789 (16)136
C16—H16B···Cg1iii0.962.973.8080 (14)147
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H17BrO4
Mr377.22
Crystal system, space groupTetragonal, P42/n
Temperature (K)100
a, c (Å)26.6517 (3), 4.4238 (1)
V3)3142.28 (9)
Z8
Radiation typeMo Kα
µ (mm1)2.63
Crystal size (mm)0.55 × 0.12 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.320, 0.726
No. of measured, independent and
observed [I > 2σ(I)] reflections
142737, 9693, 6638
Rint0.062
(sin θ/λ)max1)0.904
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.097, 1.07
No. of reflections9693
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.56

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.932.523.4391 (16)170
C17—H17C···O3ii0.962.523.2789 (16)136
C16—H16B···Cg1iii0.962.973.8080 (14)147
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z1; (iii) x, y, z+1.
 

Footnotes

This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of Science in Thailand.

Additional correspondence author, email: hkfun@usm.my.

Acknowledgements

The authors thank the Thailand Research Fund (TRF) and Prince of Songkla University for financial support and also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationNg, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1570–o1572.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Chantrapromma, S., Fun, H.-K., Dharmaprakash, S. M. & Babu, H. B. R. (2007). Acta Cryst. E63, o2612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451–453.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A., Puranik, V. G. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4798–o4799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrasad, Y. R., Kumar, P. R., Smile, D. J. & Babu, P. A. (2008). ARKIVOC, 11, 266–276.  CrossRef Google Scholar
First citationSchlogl, K. & Egger, H. (1963). Monatsh. Chem. 94, 376–392.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds