metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­methyl­tin(IV)]-μ-2-(3-thien­yl)acetato]

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com

(Received 14 November 2008; accepted 3 December 2008; online 10 December 2008)

The title compound, [Sn(CH3)3(C6H5O2S)]n, forms an infinite chain structure parallel to [100]. There are two mol­ecules of the complex in the asymmetric unit. The geometry of the Sn atoms in both mol­ecules is distorted trigonal-bipyramidal. The S and C atoms of the thio­phene rings in both mol­ecules are disordered over two sites with site-occupancy factors 0.799 (9)/0.201 (9) and 0.618 (7)/0.382 (7), respectively.

Related literature

For related structures, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, J. V. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. 2, 1349-1356.]); Ma et al. (2006[Ma, C., Li, J., Zhang, R. & Wang, D. (2006). J. Organomet. Chem. 691, 1713-1721.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)3(C6H5O2S)]

  • Mr = 304.95

  • Triclinic, [P \overline 1]

  • a = 10.0677 (9) Å

  • b = 10.839 (1) Å

  • c = 13.2024 (17) Å

  • α = 107.813 (2)°

  • β = 105.606 (1)°

  • γ = 105.030 (1)°

  • V = 1226.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.23 mm−1

  • T = 298 (2) K

  • 0.55 × 0.50 × 0.48 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.374, Tmax = 0.415 (expected range = 0.310–0.344)

  • 6334 measured reflections

  • 4227 independent reflections

  • 2865 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.143

  • S = 0.97

  • 4227 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.94 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (Fig. 1), possesses an infinite one dimensional chain structure arising from Sn—O bridges to the ligand. The Sn1 atom has distorted trigonal-bipyramidal geometry, with atoms O1 and O3 in axial positions [O1—Sn—O3 = 174.7 (2) °] and the C atoms of the three methyl groups in equatorial positions. Associated with the sum of the angles subtended at the Sn1 in the equatorial plane is 359.2 (4) °, indicating approximate coplanarity of these atoms; the Sn1—O1 and Sn1—O3 distance, 2.367 (6) and 2.174 (6) Å, repectively, are close to the corresponding distances reported in organotin compounds (Addison et al., 1984; Ma et al., 2006). The environment of the Sn2 atom is approximate to Sn1.

Related literature top

For related structures, see: Addison et al. (1984); Ma et al. (2006).

Experimental top

The reaction was carried out under nitrogen atmosphere. 3-Thiophenemalonic acid (1 mmol) and sodium ethoxide (2.2 mmol) were added to benzene (30 ml) in a Schlenk flask and stirred for 0.5 h. Trimethyltin chloride (2 mmol) was then added and the reaction mixture was stirred for 12 h at 348 K. The resulting clear solution was evaporated under vacuum. The product was crystallized from a mixture of ether/petroleum ether (1:1) to afford the title compound unexpectedly.

Refinement top

The atoms S1, S2, C6, C11 and C12 were found to be disordered over two sites, and the ratio of the occupancy factors refined to 0.680 (7):0.320 (7), 0.624 (7):0.376 (7), 0.799 (9):0.201 (9), 0.624 (7):0.376 (7) and 0.624 (7):0.376 (7) for atoms S1:S1', S2:S2', C6:C6', C11:C11' and C12:C12', respectively. H atoms were positioned geometrically, with C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C) where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the unit cell showing polymeric chains of (I), H atoms have been omitted for clarity.
catena-Poly[[trimethyltin(IV)]-µ-2-(3-thienyl)acetato] top
Crystal data top
[Sn(CH3)3(C6H5O2S)]Z = 4
Mr = 304.95F(000) = 600
Triclinic, P1Dx = 1.652 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0677 (9) ÅCell parameters from 2369 reflections
b = 10.839 (1) Åθ = 2.5–25.0°
c = 13.2024 (17) ŵ = 2.23 mm1
α = 107.813 (2)°T = 298 K
β = 105.606 (1)°Block, colorless
γ = 105.030 (1)°0.55 × 0.50 × 0.48 mm
V = 1226.0 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4227 independent reflections
Radiation source: fine-focus sealed tube2865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.374, Tmax = 0.415k = 1112
6334 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0669P)2 + 2.6141P]
where P = (Fo2 + 2Fc2)/3
4227 reflections(Δ/σ)max = 0.048
282 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Sn(CH3)3(C6H5O2S)]γ = 105.030 (1)°
Mr = 304.95V = 1226.0 (2) Å3
Triclinic, P1Z = 4
a = 10.0677 (9) ÅMo Kα radiation
b = 10.839 (1) ŵ = 2.23 mm1
c = 13.2024 (17) ÅT = 298 K
α = 107.813 (2)°0.55 × 0.50 × 0.48 mm
β = 105.606 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4227 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2865 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 0.415Rint = 0.039
6334 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 0.97Δρmax = 0.98 e Å3
4227 reflectionsΔρmin = 0.94 e Å3
282 parameters
Special details top

Experimental. Yield 76%; m.p. 458 (3) K. Analysis calculated (%) for C9H14O2S1Sn1 (Mr = 304.95): C, 35.42; H, 4.59. Found: C, 35.53; H, 4.67.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.00471 (6)0.03382 (5)0.21785 (4)0.0461 (2)
Sn20.41279 (6)0.16957 (6)0.33911 (5)0.0545 (2)
O10.1169 (7)0.1535 (7)0.3189 (5)0.0680 (15)
O20.1760 (6)0.2957 (6)0.4423 (5)0.0676 (14)
O30.0962 (6)0.0894 (6)0.1133 (5)0.0606 (13)
O40.3251 (7)0.0451 (7)0.2369 (6)0.0690 (15)
S10.2843 (5)0.3983 (5)0.8011 (4)0.1006 (13)0.799 (9)
S20.3209 (8)0.4916 (6)0.1179 (6)0.119 (2)0.618 (7)
C6'0.247 (7)0.323 (7)0.756 (4)0.1006 (13)0.201 (9)
H6'0.28710.26830.78660.121*0.201 (9)
C12'0.385 (3)0.442 (4)0.161 (3)0.100 (3)0.382 (7)
H12'0.45620.48060.17700.120*0.382 (7)
C10.0805 (10)0.2573 (10)0.4090 (8)0.0614 (17)
C20.0805 (10)0.3498 (10)0.4811 (8)0.0670 (18)
H2A0.14200.30840.44830.080*
H2B0.09790.43950.47580.080*
C30.2552 (11)0.3558 (12)0.6612 (8)0.088 (2)
H30.31580.32410.62650.106*
C40.1300 (10)0.3741 (10)0.6046 (8)0.0668 (18)
C50.0582 (11)0.4211 (11)0.6774 (7)0.083 (2)
H50.03350.42840.65050.100*
C60.1366 (18)0.4563 (19)0.7945 (10)0.092 (2)0.799 (9)
H60.11420.50150.85620.111*0.799 (9)
S1'0.142 (2)0.4122 (19)0.7986 (12)0.092 (2)0.201 (9)
C70.2353 (10)0.0589 (9)0.1473 (8)0.0613 (17)
C80.2889 (11)0.1548 (10)0.0747 (9)0.0717 (19)
H8A0.23200.18080.00570.086*
H8B0.39220.10540.09020.086*
C90.3697 (14)0.3484 (11)0.0930 (10)0.097 (2)
H90.45490.31740.07840.117*
C100.2751 (12)0.2818 (11)0.0960 (10)0.0784 (19)
C110.141 (2)0.3678 (19)0.0865 (18)0.092 (3)0.618 (7)
H110.05640.34570.07470.111*0.618 (7)
C120.1449 (17)0.5016 (18)0.0973 (18)0.087 (3)0.618 (7)
H120.06720.57380.09350.105*0.618 (7)
C11'0.216 (3)0.312 (2)0.175 (3)0.085 (3)0.382 (7)
H11'0.16990.25890.21230.102*0.382 (7)
S2'0.2352 (12)0.4508 (9)0.1964 (10)0.112 (2)0.382 (7)
C130.0846 (11)0.0140 (10)0.3604 (8)0.068 (2)
H13A0.18230.05360.41040.102*
H13B0.08870.10540.33410.102*
H13C0.01910.01200.40150.102*
C140.2133 (10)0.0952 (9)0.0935 (8)0.066 (2)
H14A0.22190.19100.06660.098*
H14B0.23170.06790.03000.098*
H14C0.28480.08500.12790.098*
C150.1068 (11)0.2206 (9)0.2013 (8)0.069 (2)
H15A0.06320.28690.22750.104*
H15B0.09190.20030.12210.104*
H15C0.21130.25890.24680.104*
C160.4000 (12)0.0100 (11)0.3667 (9)0.082 (3)
H16A0.31110.01630.43160.123*
H16B0.39800.07550.29970.123*
H16C0.48510.05210.38150.123*
C170.4101 (11)0.2078 (11)0.1919 (8)0.075 (3)
H17A0.40970.12740.13550.113*
H17B0.32270.28710.21280.113*
H17C0.49690.22630.16050.113*
C180.4695 (12)0.3080 (12)0.4558 (10)0.099 (4)
H18A0.57230.26590.44290.149*
H18B0.45300.39330.44450.149*
H18C0.40900.32780.53300.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0353 (3)0.0473 (3)0.0463 (3)0.0115 (2)0.0107 (2)0.0144 (3)
Sn20.0379 (3)0.0577 (4)0.0552 (4)0.0155 (3)0.0156 (3)0.0103 (3)
O10.045 (3)0.069 (3)0.067 (3)0.018 (2)0.015 (2)0.007 (2)
O20.045 (3)0.071 (3)0.069 (3)0.024 (2)0.018 (2)0.007 (2)
O30.050 (3)0.058 (3)0.070 (3)0.023 (2)0.025 (2)0.017 (2)
O40.049 (3)0.065 (3)0.081 (3)0.021 (2)0.025 (2)0.015 (3)
S10.083 (2)0.112 (3)0.085 (2)0.0325 (19)0.0064 (18)0.0385 (19)
S20.105 (3)0.081 (3)0.136 (4)0.030 (3)0.018 (3)0.025 (3)
C6'0.083 (2)0.112 (3)0.085 (2)0.0325 (19)0.0064 (18)0.0385 (19)
C12'0.086 (5)0.072 (4)0.116 (5)0.025 (4)0.022 (4)0.025 (4)
C10.045 (3)0.068 (3)0.064 (3)0.022 (3)0.019 (3)0.017 (3)
C20.048 (3)0.078 (3)0.069 (3)0.026 (3)0.023 (3)0.019 (3)
C30.069 (3)0.096 (4)0.081 (3)0.032 (3)0.012 (3)0.026 (3)
C40.055 (3)0.077 (3)0.071 (3)0.028 (3)0.021 (3)0.031 (3)
C50.068 (3)0.092 (3)0.076 (3)0.029 (3)0.015 (3)0.028 (3)
C60.078 (3)0.099 (4)0.084 (3)0.025 (3)0.017 (3)0.035 (3)
S1'0.078 (3)0.099 (4)0.084 (3)0.025 (3)0.017 (3)0.035 (3)
C70.055 (3)0.057 (3)0.077 (3)0.023 (3)0.032 (3)0.026 (3)
C80.062 (3)0.065 (3)0.087 (4)0.023 (3)0.035 (3)0.024 (3)
C90.082 (4)0.076 (4)0.110 (4)0.023 (3)0.027 (3)0.023 (3)
C100.068 (3)0.065 (3)0.099 (3)0.028 (3)0.032 (3)0.026 (3)
C110.080 (4)0.073 (4)0.107 (4)0.023 (3)0.029 (4)0.025 (3)
C120.081 (4)0.065 (4)0.109 (4)0.025 (4)0.031 (4)0.031 (4)
C11'0.075 (4)0.067 (4)0.101 (4)0.024 (3)0.030 (3)0.024 (3)
S2'0.105 (4)0.078 (4)0.127 (4)0.020 (3)0.028 (4)0.033 (3)
C130.063 (4)0.075 (5)0.058 (4)0.019 (4)0.015 (4)0.028 (4)
C140.045 (4)0.064 (5)0.064 (5)0.007 (4)0.006 (4)0.018 (4)
C150.065 (5)0.062 (4)0.074 (5)0.017 (4)0.021 (4)0.030 (4)
C160.069 (5)0.079 (5)0.079 (5)0.017 (4)0.011 (4)0.033 (4)
C170.058 (5)0.078 (5)0.070 (5)0.010 (4)0.011 (4)0.029 (4)
C180.064 (6)0.096 (6)0.093 (6)0.027 (5)0.030 (5)0.016 (5)
Geometric parameters (Å, º) top
Sn1—C132.111 (8)C5—H50.9300
Sn1—C152.125 (9)C6—H60.9300
Sn1—C142.129 (8)C7—C81.499 (12)
Sn1—O32.176 (5)C8—C101.467 (13)
Sn1—O12.368 (6)C8—H8A0.9700
Sn2—C172.113 (9)C8—H8B0.9700
Sn2—C182.110 (9)C9—C101.337 (14)
Sn2—C162.116 (10)C9—H90.9300
Sn2—O22.198 (6)C10—C111.38 (2)
Sn2—O4i2.394 (6)C10—C11'1.42 (3)
O1—C11.243 (10)C11—C121.51 (2)
O2—C11.271 (10)C11—H110.9300
O3—C71.266 (10)C12—H120.9300
O4—C71.252 (11)C11'—S2'1.662 (15)
O4—Sn2ii2.394 (6)C11'—H11'0.9300
S1—C31.682 (10)C13—H13A0.9600
S1—C61.751 (14)C13—H13B0.9600
S2—C91.662 (11)C13—H13C0.9600
S2—C121.688 (13)C14—H14A0.9600
C6'—C31.420 (10)C14—H14B0.9600
C6'—S1'1.690 (17)C14—H14C0.9600
C6'—H6'0.9300C15—H15A0.9600
C12'—C91.55 (4)C15—H15B0.9600
C12'—S2'1.688 (16)C15—H15C0.9600
C12'—H12'0.9300C16—H16A0.9600
C1—C21.511 (12)C16—H16B0.9600
C2—C41.487 (12)C16—H16C0.9600
C2—H2A0.9700C17—H17A0.9600
C2—H2B0.9700C17—H17B0.9600
C3—C41.378 (8)C17—H17C0.9600
C3—H30.9300C18—H18A0.9600
C4—C51.403 (8)C18—H18B0.9600
C5—C61.409 (9)C18—H18C0.9600
C5—S1'1.642 (14)
C13—Sn1—C15125.3 (4)C10—C8—H8A109.0
C13—Sn1—C14118.1 (4)C7—C8—H8A109.0
C15—Sn1—C14115.6 (4)C10—C8—H8B109.0
C13—Sn1—O394.8 (3)C7—C8—H8B109.0
C15—Sn1—O394.7 (3)H8A—C8—H8B107.8
C14—Sn1—O389.8 (3)C10—C9—C12'121.4 (13)
C13—Sn1—O187.5 (3)C10—C9—S2113.8 (10)
C15—Sn1—O187.8 (3)C10—C9—H9123.1
C14—Sn1—O184.9 (3)C12'—C9—H9111.0
O3—Sn1—O1174.7 (2)S2—C9—H9123.1
C17—Sn2—C18115.9 (5)C9—C10—C11110.8 (12)
C17—Sn2—C16126.4 (4)C9—C10—C11'103.9 (13)
C18—Sn2—C16116.9 (5)C11—C10—C11'45.4 (13)
C17—Sn2—O295.0 (3)C9—C10—C8125.4 (10)
C18—Sn2—O289.8 (3)C11—C10—C8121.2 (12)
C16—Sn2—O294.0 (3)C11'—C10—C8123.7 (11)
C17—Sn2—O4i86.8 (3)C10—C11—C12113.3 (16)
C18—Sn2—O4i85.8 (3)C10—C11—H11123.4
C16—Sn2—O4i88.2 (3)C12—C11—H11123.3
O2—Sn2—O4i175.6 (2)C11—C12—S2105.0 (12)
C1—O1—Sn1137.2 (6)C11—C12—H12127.5
C1—O2—Sn2118.4 (6)S2—C12—H12127.5
C7—O3—Sn1119.8 (6)C10—C11'—S2'113.7 (18)
C7—O4—Sn2ii139.9 (6)C10—C11'—H11'123.2
C3—S1—C694.4 (6)S2'—C11'—H11'123.2
C9—S2—C1294.6 (8)C11'—S2'—C12'95.9 (18)
C3—C6'—S1'100.4 (16)Sn1—C13—H13A109.5
C3—C6'—H6'129.8Sn1—C13—H13B109.5
S1'—C6'—H6'129.8H13A—C13—H13B109.5
C9—C12'—S2'99.0 (18)Sn1—C13—H13C109.5
C9—C12'—H12'130.5H13A—C13—H13C109.5
S2'—C12'—H12'130.5H13B—C13—H13C109.5
O1—C1—O2122.2 (8)Sn1—C14—H14A109.5
O1—C1—C2121.5 (8)Sn1—C14—H14B109.5
O2—C1—C2116.2 (8)H14A—C14—H14B109.5
C4—C2—C1115.5 (8)Sn1—C14—H14C109.5
C4—C2—H2A108.4H14A—C14—H14C109.5
C1—C2—H2A108.4H14B—C14—H14C109.5
C4—C2—H2B108.4Sn1—C15—H15A109.5
C1—C2—H2B108.4Sn1—C15—H15B109.5
H2A—C2—H2B107.5H15A—C15—H15B109.5
C4—C3—C6'113 (2)Sn1—C15—H15C109.5
C4—C3—S1111.4 (8)H15A—C15—H15C109.5
C4—C3—H3124.3H15B—C15—H15C109.5
C6'—C3—H3116.6Sn2—C16—H16A109.5
S1—C3—H3124.3Sn2—C16—H16B109.5
C3—C4—C5112.4 (9)H16A—C16—H16B109.5
C3—C4—C2123.1 (8)Sn2—C16—H16C109.5
C5—C4—C2124.5 (8)H16A—C16—H16C109.5
C4—C5—C6114.5 (10)H16B—C16—H16C109.5
C4—C5—S1'105.5 (10)Sn2—C17—H17A109.5
C4—C5—H5122.7Sn2—C17—H17B109.5
C6—C5—H5122.7H17A—C17—H17B109.5
S1'—C5—H5129.4Sn2—C17—H17C109.5
C5—C6—S1106.5 (9)H17A—C17—H17C109.5
C5—C6—H6126.8H17B—C17—H17C109.5
S1—C6—H6126.8Sn2—C18—H18A109.5
C5—S1'—C6'99.5 (15)Sn2—C18—H18B109.5
O4—C7—O3122.5 (8)H18A—C18—H18B109.5
O4—C7—C8120.9 (8)Sn2—C18—H18C109.5
O3—C7—C8116.5 (8)H18A—C18—H18C109.5
C10—C8—C7112.8 (8)H18B—C18—H18C109.5
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Sn(CH3)3(C6H5O2S)]
Mr304.95
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.0677 (9), 10.839 (1), 13.2024 (17)
α, β, γ (°)107.813 (2), 105.606 (1), 105.030 (1)
V3)1226.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.23
Crystal size (mm)0.55 × 0.50 × 0.48
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.374, 0.415
No. of measured, independent and
observed [I > 2σ(I)] reflections
6334, 4227, 2865
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.143, 0.97
No. of reflections4227
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 0.94

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the National Natural Science Foundation of China (20771053) for financial support.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, J. V. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. 2, 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationMa, C., Li, J., Zhang, R. & Wang, D. (2006). J. Organomet. Chem. 691, 1713–1721.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds