organic compounds
2,6,7-Trioxa-1-phosphabicyclo[2.2.2]octan-4-ylmethanol 1-sulfide
aCollege of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China, and bCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: gaosunday@yahoo.com.cn
The title compound, C5H9O4PS, was synthesized by the reaction of pentaerythritol with thiophosphoryl chloride. In the the three six-membered rings all adopt boat conformations. Molecules form chains along the c axis via intermolecular O—H⋯O hydrogen bonds.
Related literature
For a general background to the synthesis and applications of the title compound, see: Bourbigot & Duquesne (2007); Fontaine et al. (2008); Le Bras et al. (1997); Ratz & Aweeting (1964).
Experimental
Crystal data
|
Data collection: DIFRAC (Gabe et al., 1993); cell DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808041937/rk2119sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808041937/rk2119Isup2.hkl
A mixture of 62.6 g (0.46 mol) pentaerythritol and 77.9 g (0.46 mol) thiophosphoryl chloride was heated at 418 K in a 250 ml round–bottomed flask equipped for reflux, protected from atmospheric moisture and equipped with magnetic stirrer. Evolution of hydrogen chloride ceased after 5 h. The resulting cake was extracted with 150 ml boiling water and cooled to room temperature. During the extracting some material remained undissolved and collected as a heavy oil at the bottom of the flask. The aqueous solvent was separated from this oil by decantation through a folded filter. The product was crystallized from water and afforded white crystals (62 g, yield 68.7%, m.p. 431–433 K).
H atoms were positioned geometrically (C—H = 0.97Å and O—H = 0.82 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(O).
Data collection: DIFRAC (Gabe et al., 1993); cell
DIFRAC (Gabe et al., 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C5H9O4PS | F(000) = 408 |
Mr = 196.16 | Dx = 1.628 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 16 reflections |
a = 11.571 (3) Å | θ = 4.5–7.2° |
b = 9.724 (3) Å | µ = 0.57 mm−1 |
c = 7.112 (4) Å | T = 292 K |
V = 800.2 (6) Å3 | Block, colourless |
Z = 4 | 0.44 × 0.40 × 0.24 mm |
Enraf–Nonius CAD-4 diffractometer | 864 reflections with > 2s(I) |
Radiation source: Fine–focus sealed tube | Rint = 0.009 |
Graphite monochromator | θmax = 25.5°, θmin = 2.7° |
ω/2θ scans | h = −13→13 |
Absorption correction: for a sphere (Farrugia, 1999) | k = −11→11 |
Tmin = 0.861, Tmax = 0.863 | l = −8→2 |
1224 measured reflections | 3 standard reflections every 80 reflections |
949 independent reflections | intensity decay: 0.3% |
Refinement on F2 | Secondary atom site location: Difmap |
Least-squares matrix: Full | Hydrogen site location: Geom |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0792P)2 + 0.1948P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
949 reflections | Δρmax = 0.45 e Å−3 |
101 parameters | Δρmin = −0.23 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 137 Friedel pairs |
Primary atom site location: Direct | Absolute structure parameter: −0.04 (19) |
C5H9O4PS | V = 800.2 (6) Å3 |
Mr = 196.16 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 11.571 (3) Å | µ = 0.57 mm−1 |
b = 9.724 (3) Å | T = 292 K |
c = 7.112 (4) Å | 0.44 × 0.40 × 0.24 mm |
Enraf–Nonius CAD-4 diffractometer | 864 reflections with > 2s(I) |
Absorption correction: for a sphere (Farrugia, 1999) | Rint = 0.009 |
Tmin = 0.861, Tmax = 0.863 | 3 standard reflections every 80 reflections |
1224 measured reflections | intensity decay: 0.3% |
949 independent reflections |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.106 | Δρmax = 0.45 e Å−3 |
S = 1.04 | Δρmin = −0.23 e Å−3 |
949 reflections | Absolute structure: Flack (1983), 137 Friedel pairs |
101 parameters | Absolute structure parameter: −0.04 (19) |
1 restraint |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.43219 (11) | 0.07576 (14) | 1.1866 (2) | 0.0617 (4) | |
P1 | 0.32384 (8) | 0.09916 (9) | 0.98909 (19) | 0.0389 (3) | |
O1 | 0.2853 (3) | −0.0370 (3) | 0.8907 (5) | 0.0534 (8) | |
O2 | 0.2054 (3) | 0.1676 (3) | 1.0501 (5) | 0.0520 (8) | |
O3 | 0.3650 (2) | 0.1924 (3) | 0.8211 (5) | 0.0509 (8) | |
O4 | 0.1030 (4) | 0.0757 (5) | 0.3982 (6) | 0.0812 (13) | |
H4 | 0.1541 | 0.1153 | 0.3394 | 0.122* | |
C3 | 0.2796 (4) | 0.2118 (5) | 0.6721 (8) | 0.0575 (12) | |
H3A | 0.3115 | 0.1806 | 0.5534 | 0.069* | |
H3B | 0.2617 | 0.3089 | 0.6603 | 0.069* | |
C1 | 0.1994 (4) | −0.0202 (5) | 0.7394 (8) | 0.0545 (11) | |
H1A | 0.1299 | −0.0711 | 0.7703 | 0.065* | |
H1B | 0.2302 | −0.0566 | 0.6227 | 0.065* | |
C2 | 0.1224 (3) | 0.1837 (5) | 0.8992 (7) | 0.0470 (10) | |
H2A | 0.1019 | 0.2801 | 0.8873 | 0.056* | |
H2B | 0.0527 | 0.1329 | 0.9296 | 0.056* | |
C4 | 0.1702 (3) | 0.1327 (4) | 0.7147 (7) | 0.0401 (9) | |
C5 | 0.0792 (4) | 0.1483 (5) | 0.5622 (7) | 0.0557 (12) | |
H5A | 0.0055 | 0.1173 | 0.6115 | 0.067* | |
H5B | 0.0716 | 0.2450 | 0.5314 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0617 (7) | 0.0732 (7) | 0.0503 (7) | 0.0055 (5) | −0.0140 (6) | 0.0133 (7) |
P1 | 0.0419 (5) | 0.0398 (4) | 0.0351 (5) | 0.0032 (4) | 0.0019 (5) | 0.0075 (5) |
O1 | 0.072 (2) | 0.0367 (14) | 0.0515 (19) | 0.0077 (13) | −0.0097 (18) | 0.0070 (16) |
O2 | 0.0443 (14) | 0.077 (2) | 0.0349 (15) | 0.0123 (14) | 0.0007 (14) | −0.0066 (16) |
O3 | 0.0430 (14) | 0.0607 (17) | 0.049 (2) | −0.0084 (13) | −0.0033 (15) | 0.0200 (17) |
O4 | 0.101 (3) | 0.106 (3) | 0.037 (2) | −0.015 (2) | −0.003 (2) | 0.001 (2) |
C3 | 0.052 (2) | 0.074 (3) | 0.047 (3) | −0.003 (2) | −0.005 (3) | 0.025 (3) |
C1 | 0.069 (3) | 0.045 (2) | 0.048 (3) | 0.0042 (19) | −0.004 (2) | −0.003 (2) |
C2 | 0.042 (2) | 0.056 (2) | 0.043 (3) | 0.0064 (17) | −0.003 (2) | −0.004 (2) |
C4 | 0.0401 (19) | 0.0421 (18) | 0.038 (2) | 0.0000 (15) | 0.0020 (18) | 0.0051 (19) |
C5 | 0.057 (3) | 0.065 (3) | 0.045 (3) | −0.005 (2) | −0.008 (2) | 0.001 (2) |
S1—P1 | 1.8966 (19) | C3—H3B | 0.9700 |
P1—O1 | 1.562 (3) | C1—C4 | 1.535 (6) |
P1—O3 | 1.573 (3) | C1—H1A | 0.9700 |
P1—O2 | 1.583 (3) | C1—H1B | 0.9700 |
O1—C1 | 1.474 (6) | C2—C4 | 1.508 (6) |
O2—C2 | 1.449 (5) | C2—H2A | 0.9700 |
O3—C3 | 1.461 (5) | C2—H2B | 0.9700 |
O4—C5 | 1.390 (6) | C4—C5 | 1.519 (7) |
O4—H4 | 0.8200 | C5—H5A | 0.9700 |
C3—C4 | 1.512 (6) | C5—H5B | 0.9700 |
C3—H3A | 0.9700 | ||
O1—P1—O3 | 103.55 (19) | C4—C1—H1B | 109.7 |
O1—P1—O2 | 103.38 (18) | H1A—C1—H1B | 108.2 |
O3—P1—O2 | 103.18 (18) | O2—C2—C4 | 111.4 (3) |
O1—P1—S1 | 114.77 (13) | O2—C2—H2A | 109.3 |
O3—P1—S1 | 115.56 (13) | C4—C2—H2A | 109.3 |
O2—P1—S1 | 114.78 (15) | O2—C2—H2B | 109.3 |
C1—O1—P1 | 115.2 (2) | C4—C2—H2B | 109.3 |
C2—O2—P1 | 114.6 (3) | H2A—C2—H2B | 108.0 |
C3—O3—P1 | 114.9 (2) | C2—C4—C3 | 108.3 (4) |
C5—O4—H4 | 109.5 | C2—C4—C5 | 109.5 (3) |
O3—C3—C4 | 110.8 (4) | C3—C4—C5 | 112.7 (4) |
O3—C3—H3A | 109.5 | C2—C4—C1 | 107.5 (4) |
C4—C3—H3A | 109.5 | C3—C4—C1 | 109.3 (3) |
O3—C3—H3B | 109.5 | C5—C4—C1 | 109.3 (4) |
C4—C3—H3B | 109.5 | O4—C5—C4 | 114.3 (4) |
H3A—C3—H3B | 108.1 | O4—C5—H5A | 108.7 |
O1—C1—C4 | 109.9 (4) | C4—C5—H5A | 108.7 |
O1—C1—H1A | 109.7 | O4—C5—H5B | 108.7 |
C4—C1—H1A | 109.7 | C4—C5—H5B | 108.7 |
O1—C1—H1B | 109.7 | H5A—C5—H5B | 107.6 |
O3—P1—O1—C1 | −54.2 (3) | O2—C2—C4—C3 | −58.1 (5) |
O2—P1—O1—C1 | 53.1 (3) | O2—C2—C4—C5 | 178.5 (4) |
S1—P1—O1—C1 | 178.9 (3) | O2—C2—C4—C1 | 59.9 (4) |
O1—P1—O2—C2 | −53.5 (3) | O3—C3—C4—C2 | 59.4 (5) |
O3—P1—O2—C2 | 54.1 (3) | O3—C3—C4—C5 | −179.2 (4) |
S1—P1—O2—C2 | −179.3 (3) | O3—C3—C4—C1 | −57.4 (5) |
O1—P1—O3—C3 | 54.9 (3) | O1—C1—C4—C2 | −59.6 (4) |
O2—P1—O3—C3 | −52.6 (4) | O1—C1—C4—C3 | 57.7 (5) |
S1—P1—O3—C3 | −178.7 (3) | O1—C1—C4—C5 | −178.4 (4) |
P1—O3—C3—C4 | −1.3 (5) | C2—C4—C5—O4 | −165.6 (4) |
P1—O1—C1—C4 | 0.8 (5) | C3—C4—C5—O4 | 73.8 (6) |
P1—O2—C2—C4 | −1.0 (5) | C1—C4—C5—O4 | −48.1 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O2i | 0.82 | 2.20 | 2.886 (6) | 141 |
Symmetry code: (i) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C5H9O4PS |
Mr | 196.16 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 292 |
a, b, c (Å) | 11.571 (3), 9.724 (3), 7.112 (4) |
V (Å3) | 800.2 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.57 |
Crystal size (mm) | 0.44 × 0.40 × 0.24 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | For a sphere (Farrugia, 1999) |
Tmin, Tmax | 0.861, 0.863 |
No. of measured, independent and observed [ > 2s(I)] reflections | 1224, 949, 864 |
Rint | 0.009 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.106, 1.04 |
No. of reflections | 949 |
No. of parameters | 101 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.23 |
Absolute structure | Flack (1983), 137 Friedel pairs |
Absolute structure parameter | −0.04 (19) |
Computer programs: DIFRAC (Gabe et al., 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O2i | 0.82 | 2.20 | 2.886 (6) | 141.2 |
Symmetry code: (i) x, y, z−1. |
Acknowledgements
The authors acknowledge the National Basic Research Program of China (contract grant No. 2005BC623800) and thank Mr Zhi-Hua Mao of Sichuan University for the X–ray data collection.
References
Bourbigot, S. & Duquesne, S. (2007). J. Mater. Chem. 17, 2283–2300. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fontaine, G., Bourbigot, S. & Duquesne, S. (2008). Polym. Degrad. Stabil. 93, 68–76. Web of Science CrossRef CAS Google Scholar
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. American Crystallographic Association, Pittsburgh meeting. Abstract PA104. Google Scholar
Le Bras, M., Bourbigot, S., Le Tallec, Y. & Laureyns, J. (1997). Polym. Degrad. Stabil. 56, 11–21. CrossRef CAS Web of Science Google Scholar
Ratz, R. & Aweeting, O. J. (1964). J. Org. Chem. 30, 438–442. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Intumescent flame retardant systems appear as an attractive topic and represent a wide and interesting area of research (Bourbigot & Duquesne, 2007). The use of pentaerythritol (Le Bras et al., 1997) as char former in intumescent formulations which composed of three components, i.e. an acid source, a char forming agent and a blowing agent for thermoplastics is associated with migration, water solubility and other problems. Those problems were solved by synthesis of additives that concentrate the three intumescent flame retardant elements in one molecule (Fontaine et al., 2008). The compound synthesized (Ratz & Aweeting, 1964) which has little intumescence is the intermediate product of the concentrate intumescent flame retardant.
In the molecule of the title compound (Fig.1), three six–membered rings adopt boat conformations. The bond angle of C3—C4—C5 is 112.7 (4)° which is bigger than one of sp3 hybrid, it may be the result of the co–existence of the three six–membered rings attached at C5. The torsion angles of S1/P1/O3/C3 and O1/C1/C4/C5 are -178.7 (3)° and -178.4 (4)°, respectively. Intermolecular O—H···O hydrogen bonds link the molecules with formation chains along c axis and effective stabilized the crystal structure (Table).