organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6,7-Trioxa-1-phosphabi­cyclo­[2.2.2]octan-4-ylmethanol 1-sulfide

aCollege of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China, and bCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: gaosunday@yahoo.com.cn

(Received 22 November 2008; accepted 10 December 2008; online 17 December 2008)

The title compound, C5H9O4PS, was synthesized by the reaction of penta­erythritol with thio­phosphoryl chloride. In the crystal structure, the three six-membered rings all adopt boat conformations. Mol­ecules form chains along the c axis via inter­molecular O—H⋯O hydrogen bonds.

Related literature

For a general background to the synthesis and applications of the title compound, see: Bourbigot & Duquesne (2007[Bourbigot, S. & Duquesne, S. (2007). J. Mater. Chem. 17, 2283-2300.]); Fontaine et al. (2008[Fontaine, G., Bourbigot, S. & Duquesne, S. (2008). Polym. Degrad. Stabil. 93, 68-76.]); Le Bras et al. (1997[Le Bras, M., Bourbigot, S., Le Tallec, Y. & Laureyns, J. (1997). Polym. Degrad. Stabil. 56, 11-21.]); Ratz & Aweeting (1964[Ratz, R. & Aweeting, O. J. (1964). J. Org. Chem. 30, 438-442.]).

[Scheme 1]

Experimental

Crystal data
  • C5H9O4PS

  • Mr = 196.16

  • Orthorhombic, P n a 21

  • a = 11.571 (3) Å

  • b = 9.724 (3) Å

  • c = 7.112 (4) Å

  • V = 800.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 292 (2) K

  • 0.44 × 0.40 × 0.24 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: for a sphere (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) Tmin = 0.861, Tmax = 0.863

  • 1224 measured reflections

  • 949 independent reflections

  • 864 reflections with > 2s(I)

  • Rint = 0.009

  • 3 standard reflections every 80 reflections intensity decay: 0.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.04

  • 949 reflections

  • 101 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 137 Friedel pairs

  • Flack parameter: −0.04 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.82 2.20 2.886 (6) 141
Symmetry code: (i) x, y, z-1.

Data collection: DIFRAC (Gabe et al., 1993[Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. American Crystallographic Association, Pittsburgh meeting. Abstract PA104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Intumescent flame retardant systems appear as an attractive topic and represent a wide and interesting area of research (Bourbigot & Duquesne, 2007). The use of pentaerythritol (Le Bras et al., 1997) as char former in intumescent formulations which composed of three components, i.e. an acid source, a char forming agent and a blowing agent for thermoplastics is associated with migration, water solubility and other problems. Those problems were solved by synthesis of additives that concentrate the three intumescent flame retardant elements in one molecule (Fontaine et al., 2008). The compound synthesized (Ratz & Aweeting, 1964) which has little intumescence is the intermediate product of the concentrate intumescent flame retardant.

In the molecule of the title compound (Fig.1), three six–membered rings adopt boat conformations. The bond angle of C3—C4—C5 is 112.7 (4)° which is bigger than one of sp3 hybrid, it may be the result of the co–existence of the three six–membered rings attached at C5. The torsion angles of S1/P1/O3/C3 and O1/C1/C4/C5 are -178.7 (3)° and -178.4 (4)°, respectively. Intermolecular O—H···O hydrogen bonds link the molecules with formation chains along c axis and effective stabilized the crystal structure (Table).

Related literature top

For a general background to the synthesis and applications of the title compound, see: Bourbigot & Duquesne (2007); Fontaine et al. (2008); Le Bras et al. (1997); Ratz & Aweeting (1964).

Experimental top

A mixture of 62.6 g (0.46 mol) pentaerythritol and 77.9 g (0.46 mol) thiophosphoryl chloride was heated at 418 K in a 250 ml round–bottomed flask equipped for reflux, protected from atmospheric moisture and equipped with magnetic stirrer. Evolution of hydrogen chloride ceased after 5 h. The resulting cake was extracted with 150 ml boiling water and cooled to room temperature. During the extracting some material remained undissolved and collected as a heavy oil at the bottom of the flask. The aqueous solvent was separated from this oil by decantation through a folded filter. The product was crystallized from water and afforded white crystals (62 g, yield 68.7%, m.p. 431–433 K).

Refinement top

H atoms were positioned geometrically (C—H = 0.97Å and O—H = 0.82 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC (Gabe et al., 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
2,6,7-Trioxa-1-phosphabicyclo[2.2.2]octan-4-ylmethanol 1-sulfide top
Crystal data top
C5H9O4PSF(000) = 408
Mr = 196.16Dx = 1.628 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 16 reflections
a = 11.571 (3) Åθ = 4.5–7.2°
b = 9.724 (3) ŵ = 0.57 mm1
c = 7.112 (4) ÅT = 292 K
V = 800.2 (6) Å3Block, colourless
Z = 40.44 × 0.40 × 0.24 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
864 reflections with > 2s(I)
Radiation source: Fine–focus sealed tubeRint = 0.009
Graphite monochromatorθmax = 25.5°, θmin = 2.7°
ω/2θ scansh = 1313
Absorption correction: for a sphere
(Farrugia, 1999)
k = 1111
Tmin = 0.861, Tmax = 0.863l = 82
1224 measured reflections3 standard reflections every 80 reflections
949 independent reflections intensity decay: 0.3%
Refinement top
Refinement on F2Secondary atom site location: Difmap
Least-squares matrix: FullHydrogen site location: Geom
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0792P)2 + 0.1948P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
949 reflectionsΔρmax = 0.45 e Å3
101 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 137 Friedel pairs
Primary atom site location: DirectAbsolute structure parameter: 0.04 (19)
Crystal data top
C5H9O4PSV = 800.2 (6) Å3
Mr = 196.16Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 11.571 (3) ŵ = 0.57 mm1
b = 9.724 (3) ÅT = 292 K
c = 7.112 (4) Å0.44 × 0.40 × 0.24 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
864 reflections with > 2s(I)
Absorption correction: for a sphere
(Farrugia, 1999)
Rint = 0.009
Tmin = 0.861, Tmax = 0.8633 standard reflections every 80 reflections
1224 measured reflections intensity decay: 0.3%
949 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.45 e Å3
S = 1.04Δρmin = 0.23 e Å3
949 reflectionsAbsolute structure: Flack (1983), 137 Friedel pairs
101 parametersAbsolute structure parameter: 0.04 (19)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43219 (11)0.07576 (14)1.1866 (2)0.0617 (4)
P10.32384 (8)0.09916 (9)0.98909 (19)0.0389 (3)
O10.2853 (3)0.0370 (3)0.8907 (5)0.0534 (8)
O20.2054 (3)0.1676 (3)1.0501 (5)0.0520 (8)
O30.3650 (2)0.1924 (3)0.8211 (5)0.0509 (8)
O40.1030 (4)0.0757 (5)0.3982 (6)0.0812 (13)
H40.15410.11530.33940.122*
C30.2796 (4)0.2118 (5)0.6721 (8)0.0575 (12)
H3A0.31150.18060.55340.069*
H3B0.26170.30890.66030.069*
C10.1994 (4)0.0202 (5)0.7394 (8)0.0545 (11)
H1A0.12990.07110.77030.065*
H1B0.23020.05660.62270.065*
C20.1224 (3)0.1837 (5)0.8992 (7)0.0470 (10)
H2A0.10190.28010.88730.056*
H2B0.05270.13290.92960.056*
C40.1702 (3)0.1327 (4)0.7147 (7)0.0401 (9)
C50.0792 (4)0.1483 (5)0.5622 (7)0.0557 (12)
H5A0.00550.11730.61150.067*
H5B0.07160.24500.53140.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0617 (7)0.0732 (7)0.0503 (7)0.0055 (5)0.0140 (6)0.0133 (7)
P10.0419 (5)0.0398 (4)0.0351 (5)0.0032 (4)0.0019 (5)0.0075 (5)
O10.072 (2)0.0367 (14)0.0515 (19)0.0077 (13)0.0097 (18)0.0070 (16)
O20.0443 (14)0.077 (2)0.0349 (15)0.0123 (14)0.0007 (14)0.0066 (16)
O30.0430 (14)0.0607 (17)0.049 (2)0.0084 (13)0.0033 (15)0.0200 (17)
O40.101 (3)0.106 (3)0.037 (2)0.015 (2)0.003 (2)0.001 (2)
C30.052 (2)0.074 (3)0.047 (3)0.003 (2)0.005 (3)0.025 (3)
C10.069 (3)0.045 (2)0.048 (3)0.0042 (19)0.004 (2)0.003 (2)
C20.042 (2)0.056 (2)0.043 (3)0.0064 (17)0.003 (2)0.004 (2)
C40.0401 (19)0.0421 (18)0.038 (2)0.0000 (15)0.0020 (18)0.0051 (19)
C50.057 (3)0.065 (3)0.045 (3)0.005 (2)0.008 (2)0.001 (2)
Geometric parameters (Å, º) top
S1—P11.8966 (19)C3—H3B0.9700
P1—O11.562 (3)C1—C41.535 (6)
P1—O31.573 (3)C1—H1A0.9700
P1—O21.583 (3)C1—H1B0.9700
O1—C11.474 (6)C2—C41.508 (6)
O2—C21.449 (5)C2—H2A0.9700
O3—C31.461 (5)C2—H2B0.9700
O4—C51.390 (6)C4—C51.519 (7)
O4—H40.8200C5—H5A0.9700
C3—C41.512 (6)C5—H5B0.9700
C3—H3A0.9700
O1—P1—O3103.55 (19)C4—C1—H1B109.7
O1—P1—O2103.38 (18)H1A—C1—H1B108.2
O3—P1—O2103.18 (18)O2—C2—C4111.4 (3)
O1—P1—S1114.77 (13)O2—C2—H2A109.3
O3—P1—S1115.56 (13)C4—C2—H2A109.3
O2—P1—S1114.78 (15)O2—C2—H2B109.3
C1—O1—P1115.2 (2)C4—C2—H2B109.3
C2—O2—P1114.6 (3)H2A—C2—H2B108.0
C3—O3—P1114.9 (2)C2—C4—C3108.3 (4)
C5—O4—H4109.5C2—C4—C5109.5 (3)
O3—C3—C4110.8 (4)C3—C4—C5112.7 (4)
O3—C3—H3A109.5C2—C4—C1107.5 (4)
C4—C3—H3A109.5C3—C4—C1109.3 (3)
O3—C3—H3B109.5C5—C4—C1109.3 (4)
C4—C3—H3B109.5O4—C5—C4114.3 (4)
H3A—C3—H3B108.1O4—C5—H5A108.7
O1—C1—C4109.9 (4)C4—C5—H5A108.7
O1—C1—H1A109.7O4—C5—H5B108.7
C4—C1—H1A109.7C4—C5—H5B108.7
O1—C1—H1B109.7H5A—C5—H5B107.6
O3—P1—O1—C154.2 (3)O2—C2—C4—C358.1 (5)
O2—P1—O1—C153.1 (3)O2—C2—C4—C5178.5 (4)
S1—P1—O1—C1178.9 (3)O2—C2—C4—C159.9 (4)
O1—P1—O2—C253.5 (3)O3—C3—C4—C259.4 (5)
O3—P1—O2—C254.1 (3)O3—C3—C4—C5179.2 (4)
S1—P1—O2—C2179.3 (3)O3—C3—C4—C157.4 (5)
O1—P1—O3—C354.9 (3)O1—C1—C4—C259.6 (4)
O2—P1—O3—C352.6 (4)O1—C1—C4—C357.7 (5)
S1—P1—O3—C3178.7 (3)O1—C1—C4—C5178.4 (4)
P1—O3—C3—C41.3 (5)C2—C4—C5—O4165.6 (4)
P1—O1—C1—C40.8 (5)C3—C4—C5—O473.8 (6)
P1—O2—C2—C41.0 (5)C1—C4—C5—O448.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.822.202.886 (6)141
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC5H9O4PS
Mr196.16
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)292
a, b, c (Å)11.571 (3), 9.724 (3), 7.112 (4)
V3)800.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.44 × 0.40 × 0.24
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionFor a sphere
(Farrugia, 1999)
Tmin, Tmax0.861, 0.863
No. of measured, independent and
observed [ > 2s(I)] reflections
1224, 949, 864
Rint0.009
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.04
No. of reflections949
No. of parameters101
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.23
Absolute structureFlack (1983), 137 Friedel pairs
Absolute structure parameter0.04 (19)

Computer programs: DIFRAC (Gabe et al., 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.822.202.886 (6)141.2
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors acknowledge the National Basic Research Program of China (contract grant No. 2005BC623800) and thank Mr Zhi-Hua Mao of Sichuan University for the X–ray data collection.

References

First citationBourbigot, S. & Duquesne, S. (2007). J. Mater. Chem. 17, 2283–2300.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFontaine, G., Bourbigot, S. & Duquesne, S. (2008). Polym. Degrad. Stabil. 93, 68–76.  Web of Science CrossRef CAS Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. American Crystallographic Association, Pittsburgh meeting. Abstract PA104.  Google Scholar
First citationLe Bras, M., Bourbigot, S., Le Tallec, Y. & Laureyns, J. (1997). Polym. Degrad. Stabil. 56, 11–21.  CrossRef CAS Web of Science Google Scholar
First citationRatz, R. & Aweeting, O. J. (1964). J. Org. Chem. 30, 438–442.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds