metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[glycinium(0.5+)] perrhenate

aCEMDRX, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal, and bDepartamento de Física, Universidade do Minho, P-4710-057 Braga, Portugal
*Correspondence e-mail: vhugo@pollux.fis.uc.pt

(Received 29 July 2008; accepted 18 November 2008; online 6 December 2008)

All the residues of the title compound, (C2H5.5NO2)2[ReO4], are located in general crystallographic positions. The glycine mol­ecules have usual conformations [Rodrigues Matos Beja et al. (2006[Rodrigues, V. H., Matos Beja, A., Paixão, J. A. & Costa, M. M. R. R. (2006). Acta Cryst. C62, o71-o72.]). Acta Cryst. C62, o71–o72] with the H atom of the carboxylate group half-occupied, thus bearing a formal half-positive charge per molecule. The perrhenate anion has nearly ideal tetra­hedral geometry. A large number of strong hydrogen bonds give rise to the overall three-dimensional network. A two-dimensional network, parallel to (100), is made up of strong O—H⋯O hydrogen bonds with a donor acceptor distance of 2.445 (2) Å. A large number of weaker O—H⋯O and N—H⋯O hydrogen bonds consolidates the structure into an overall three-dimensional network.

Related literature

For a related structure, see: Rodrigues et al. (2006[Rodrigues, V. H., Matos Beja, A., Paixão, J. A. & Costa, M. M. R. R. (2006). Acta Cryst. C62, o71-o72.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H5.5NO2)2[ReO4]

  • Mr = 401.35

  • Monoclinic, P 21 /c

  • a = 15.7095 (5) Å

  • b = 8.1826 (3) Å

  • c = 8.2909 (3) Å

  • β = 103.7152 (16)°

  • V = 1035.36 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.77 mm−1

  • T = 291 (2) K

  • 0.15 × 0.13 × 0.10 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.18, Tmax = 0.31

  • 78826 measured reflections

  • 8587 independent reflections

  • 6232 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.055

  • S = 1.06

  • 8587 reflections

  • 141 parameters

  • H-atom parameters constrained

  • Δρmax = 2.33 e Å−3

  • Δρmin = −2.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12⋯O22i 0.82 1.64 2.445 (2) 167
N11—H11A⋯O11ii 0.89 2.02 2.869 (2) 158
N11—H11B⋯O21 0.89 2.18 3.003 (2) 153
N11—H11B⋯O2 0.89 2.47 3.000 (3) 119
N11—H11C⋯O11iii 0.89 1.94 2.830 (3) 175
O22—H22⋯O12i 0.82 1.64 2.445 (2) 165
N21—H21A⋯O21 0.89 2.27 2.738 (3) 113
N21—H21A⋯O1 0.89 2.29 3.136 (4) 158
N21—H21B⋯O3iv 0.89 2.10 2.896 (3) 149
N21—H21B⋯O1v 0.89 2.60 3.274 (4) 133
N21—H21C⋯O4vi 0.89 2.14 2.794 (3) 130
N21—H21C⋯O1vii 0.89 2.37 3.012 (3) 130
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker–Nonius, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Related literature top

For a related structure, see: Rodrigues et al. (2006).

Experimental top

Crystals of the monoclinic polymorph of glycinium glycine perrhenate were obtained from a water solution of analytical grade reagents glycine(99.5%) and perrhenic acid solution (65–75% water, 99.5%), purchased from Aldrich, in a 2:1 molar ratio.

Refinement top

The structure was solved by direct methods using SHELXS97. All H atoms were first located on a difference Fourier map; those bonded to C atoms and carboxyl O atoms were placed at idealized positions and refined as riding [C—H=0.97 and 0.98 Å, O—H=0.82 Å, Uiso(H)=1.2Ueq(C) and Uiso(H)=1.5Ueq(O)].

Examination of the crystal structure with PLATON (Spek, 2003) showed that there are no solvent-accessible voids in the crystal lattice.

Computing details top

Data collection: APEX2 (Bruker–Nonius, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. Packing of glycine molecules showing the (100) network.
Bis[glycinium(0.5+)] perrhenate top
Crystal data top
2(C2H5.5NO2)[ReO4]F(000) = 752
Mr = 401.35Dx = 2.575 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7839 reflections
a = 15.7095 (5) Åθ = 4.0–40.1°
b = 8.1826 (3) ŵ = 11.77 mm1
c = 8.2909 (3) ÅT = 291 K
β = 103.7152 (16)°Block, translucent colourless
V = 1035.36 (6) Å30.15 × 0.13 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
8587 independent reflections
Radiation source: fine-focus sealed tube6232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 45.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 3031
Tmin = 0.18, Tmax = 0.31k = 1615
78826 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.001P)2 + 2.2865P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
8587 reflectionsΔρmax = 2.33 e Å3
141 parametersΔρmin = 2.87 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00614 (15)
Crystal data top
2(C2H5.5NO2)[ReO4]V = 1035.36 (6) Å3
Mr = 401.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.7095 (5) ŵ = 11.77 mm1
b = 8.1826 (3) ÅT = 291 K
c = 8.2909 (3) Å0.15 × 0.13 × 0.10 mm
β = 103.7152 (16)°
Data collection top
Bruker APEXII
diffractometer
8587 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
6232 reflections with I > 2σ(I)
Tmin = 0.18, Tmax = 0.31Rint = 0.038
78826 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.06Δρmax = 2.33 e Å3
8587 reflectionsΔρmin = 2.87 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.384633 (5)0.604894 (11)0.053166 (13)0.02896 (3)
O10.43021 (16)0.4923 (4)0.2269 (3)0.0636 (7)
O20.28327 (14)0.6733 (3)0.0625 (4)0.0633 (8)
O30.44936 (16)0.7699 (3)0.0397 (5)0.0685 (9)
O40.3784 (2)0.4775 (4)0.1121 (3)0.0698 (8)
O110.02851 (12)0.9119 (2)0.2663 (2)0.0343 (4)
O120.02823 (11)0.7477 (2)0.0538 (2)0.0366 (4)
H120.07470.78900.06140.055*0.50
C110.03285 (13)0.7965 (3)0.1730 (3)0.0242 (3)
C120.11921 (13)0.7067 (3)0.1971 (3)0.0291 (4)
H12A0.16080.77540.15880.035*
H12B0.14240.68640.31450.035*
N110.11042 (11)0.5501 (2)0.1070 (2)0.0253 (3)
H11A0.07610.48330.14790.038*
H11B0.16310.50480.11890.038*
H11C0.08680.56760.00020.038*
O210.24920 (12)0.3008 (2)0.0961 (3)0.0409 (4)
O220.16419 (12)0.1024 (3)0.0423 (3)0.0504 (6)
H220.12410.16410.03530.076*0.50
C210.23754 (14)0.1710 (3)0.0210 (3)0.0281 (4)
C220.31325 (16)0.0716 (3)0.0074 (4)0.0373 (5)
H22A0.30760.03990.02860.045*
H22B0.31090.06900.12540.045*
N210.39933 (12)0.1372 (3)0.0823 (3)0.0337 (4)
H21A0.39230.23720.11940.051*
H21B0.43510.14170.01360.051*
H21C0.42240.07240.16760.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.02220 (4)0.02717 (4)0.04083 (5)0.00013 (3)0.01407 (3)0.00404 (3)
O10.0401 (12)0.093 (2)0.0524 (14)0.0127 (13)0.0001 (10)0.0177 (14)
O20.0333 (10)0.0379 (10)0.130 (2)0.0040 (8)0.0416 (13)0.0007 (13)
O30.0467 (12)0.0383 (11)0.136 (3)0.0090 (9)0.0521 (16)0.0019 (14)
O40.080 (2)0.083 (2)0.0523 (15)0.0094 (16)0.0276 (14)0.0268 (14)
O110.0309 (7)0.0398 (9)0.0320 (8)0.0054 (7)0.0069 (6)0.0106 (7)
O120.0226 (7)0.0378 (9)0.0440 (10)0.0077 (6)0.0031 (7)0.0144 (7)
C110.0206 (7)0.0270 (8)0.0257 (9)0.0011 (6)0.0068 (6)0.0006 (7)
C120.0194 (7)0.0314 (9)0.0348 (11)0.0015 (7)0.0029 (7)0.0069 (8)
N110.0187 (6)0.0262 (7)0.0300 (9)0.0035 (5)0.0043 (6)0.0002 (6)
O210.0259 (7)0.0310 (8)0.0635 (13)0.0041 (6)0.0063 (8)0.0144 (8)
O220.0219 (7)0.0475 (11)0.0747 (15)0.0057 (7)0.0029 (8)0.0284 (11)
C210.0213 (8)0.0288 (9)0.0323 (10)0.0054 (7)0.0027 (7)0.0034 (8)
C220.0254 (9)0.0429 (13)0.0417 (13)0.0092 (9)0.0043 (9)0.0133 (10)
N210.0217 (7)0.0309 (9)0.0490 (12)0.0096 (6)0.0094 (8)0.0134 (8)
Geometric parameters (Å, º) top
Re1—O41.706 (3)N11—H11B0.8900
Re1—O21.707 (2)N11—H11C0.8900
Re1—O31.710 (2)O21—C211.223 (3)
Re1—O11.717 (3)O22—C211.277 (3)
O11—C111.233 (3)O22—H220.8200
O12—C111.267 (3)C21—C221.505 (3)
O12—H120.8200C22—N211.481 (3)
C11—C121.514 (3)C22—H22A0.9700
C12—N111.473 (3)C22—H22B0.9700
C12—H12A0.9700N21—H21A0.8900
C12—H12B0.9700N21—H21B0.8900
N11—H11A0.8900N21—H21C0.8900
O4—Re1—O2111.10 (15)C12—N11—H11C109.5
O4—Re1—O3110.60 (15)H11A—N11—H11C109.5
O2—Re1—O3108.64 (11)H11B—N11—H11C109.5
O4—Re1—O1106.21 (17)C21—O22—H22109.5
O2—Re1—O1110.24 (14)O21—C21—O22127.1 (2)
O3—Re1—O1110.03 (15)O21—C21—C22121.4 (2)
C11—O12—H12109.5O22—C21—C22111.5 (2)
O11—C11—O12125.87 (19)N21—C22—C21112.7 (2)
O11—C11—C12118.03 (19)N21—C22—H22A109.0
O12—C11—C12116.08 (18)C21—C22—H22A109.0
N11—C12—C11112.44 (17)N21—C22—H22B109.0
N11—C12—H12A109.1C21—C22—H22B109.0
C11—C12—H12A109.1H22A—C22—H22B107.8
N11—C12—H12B109.1C22—N21—H21A109.5
C11—C12—H12B109.1C22—N21—H21B109.5
H12A—C12—H12B107.8H21A—N21—H21B109.5
C12—N11—H11A109.5C22—N21—H21C109.5
C12—N11—H11B109.5H21A—N21—H21C109.5
H11A—N11—H11B109.5H21B—N21—H21C109.5
O11—C11—C12—N11166.3 (2)O21—C21—C22—N217.3 (4)
O12—C11—C12—N1115.7 (3)O22—C21—C22—N21172.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O22i0.821.642.445 (2)167
N11—H11A···O11ii0.892.022.869 (2)158
N11—H11B···O210.892.183.003 (2)153
N11—H11B···O20.892.473.000 (3)119
N11—H11C···O11iii0.891.942.830 (3)175
O22—H22···O12i0.821.642.445 (2)165
N21—H21A···O210.892.272.738 (3)113
N21—H21A···O10.892.293.136 (4)158
N21—H21B···O3iv0.892.102.896 (3)149
N21—H21B···O1v0.892.603.274 (4)133
N21—H21C···O4vi0.892.142.794 (3)130
N21—H21C···O1vii0.892.373.012 (3)130
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z; (v) x, y+1/2, z1/2; (vi) x, y+1/2, z+1/2; (vii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2(C2H5.5NO2)[ReO4]
Mr401.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)15.7095 (5), 8.1826 (3), 8.2909 (3)
β (°) 103.7152 (16)
V3)1035.36 (6)
Z4
Radiation typeMo Kα
µ (mm1)11.77
Crystal size (mm)0.15 × 0.13 × 0.10
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.18, 0.31
No. of measured, independent and
observed [I > 2σ(I)] reflections
78826, 8587, 6232
Rint0.038
(sin θ/λ)max1)1.001
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.055, 1.06
No. of reflections8587
No. of parameters141
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.33, 2.87

Computer programs: APEX2 (Bruker–Nonius, 2004), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O22i0.821.642.445 (2)167.1
N11—H11A···O11ii0.892.022.869 (2)158.0
N11—H11B···O210.892.183.003 (2)152.5
N11—H11B···O20.892.473.000 (3)118.6
N11—H11C···O11iii0.891.942.830 (3)174.6
O22—H22···O12i0.821.642.445 (2)165.0
N21—H21A···O210.892.272.738 (3)112.6
N21—H21A···O10.892.293.136 (4)158.3
N21—H21B···O3iv0.892.102.896 (3)149.1
N21—H21B···O1v0.892.603.274 (4)132.9
N21—H21C···O4vi0.892.142.794 (3)129.8
N21—H21C···O1vii0.892.373.012 (3)129.6
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z; (v) x, y+1/2, z1/2; (vi) x, y+1/2, z+1/2; (vii) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT).

References

First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRodrigues, V. H., Matos Beja, A., Paixão, J. A. & Costa, M. M. R. R. (2006). Acta Cryst. C62, o71–o72.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds