metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m66-m67

Poly[(μ-5,7-dihydr­­oxy-4-oxo-2-phenyl-4H-chromene-8-sulfonato)potassium(I)]

aDepartment of Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China, and bDepartment of Chemistry, Xianyang Normal University, Xianyang 712000, People's Republic of China
*Correspondence e-mail: liubin1958@126.com

(Received 6 November 2008; accepted 9 December 2008; online 13 December 2008)

In the polymeric title compound, [K(C15H9O7S)]n, the potassium cation is five-coordinated by four sulfonate O atoms and one carbonyl O atom. Two intra­molecular O—H⋯O hydrogen bonds stabilize the conformation of the anion. The polymeric three-dimensional supra­molecular architecture is formed via coordination inter­actions and ππ stacking inter­actions involving centrosymmetrically related pyrone rings, with a centroid–centroid separation of 3.513 (2) Å.

Related literature

For biological activities of flavonoids, see: Aljancic et al. (1999[Aljancic, I., Vajs, V., Menkovic, N., Karadzic, I., Juranic, N., Milosavljevic, S. & Macura, S. (1999). J. Nat. Prod. 62, 909-911.]); Habtemariam (1997[Habtemariam, S. (1997). J. Nat. Prod. 60, 775-778.]); Knekt et al. (1997[Knekt, P., Jarvinen, R., Seppanen, R., Heliovaara, M., Pukkala, L. T. & Aromaa, A. (1997). Am. J. Epidemiol. 146, 223-230.]); Ko et al. (1998[Ko, F., Chu, C., Lin, C., Chang, C. & Teng, C. (1998). Biochim. Biophys. Acta, 1389, 81-90.]); Nkengfack et al. (1994[Nkengfack, A., Vouffo, T., Fomun, Z., Meyer, M. & Bergendorff, S. O. (1994). Phytochemistry, 36, 1047-1051.]); Sakaguchi et al. (1992[Sakaguchi, Y., Maehara, Y., Baba, H., Kusumoto, T., Sugimachi, K. & Newmanv, R. A. (1992). Cancer Res. 52, 3306-3309.]). For related structures, see: Benedict et al. (2004[Benedict, J. B., Bullard, T., Kaminsky, W. & Kahr, B. (2004). Acta Cryst. C60, m551-m553.]); Li & Zhang (2008[Li, W.-W. & Zhang, Z.-T. (2008). Acta Cryst. C64, m176-m178.]); Wang & Zhang (2005a[Wang, Q.-Y. & Zhang, Z.-T. (2005a). Acta Cryst. C61, m215-m217.],b[Wang, X. B. & Zhang, Z. T. (2005b). Z. Kristallogr. New Cryst. Struct. 220, 223-225.]); Zhang & Wang (2005a[Zhang, Z. T. & Wang, Q. Y. (2005a). Heterocycles, 65, 1947-1956.],b[Zhang, Z. T. & Wang, Q. Y. (2005b). Struct. Chem. 16, 415-420.]).

[Scheme 1]

Experimental

Crystal data
  • [K(C15H9O7S)]

  • Mr = 372.38

  • Orthorhombic, P c c n

  • a = 19.0846 (19) Å

  • b = 20.6555 (19) Å

  • c = 7.5148 (7) Å

  • V = 2962.3 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 296 (2) K

  • 0.37 × 0.20 × 0.13 mm

Data collection
  • Bruker SMART-1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 0.933

  • 13998 measured reflections

  • 2637 independent reflections

  • 1746 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.152

  • S = 1.02

  • 2637 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

K1—O5i 2.674 (2)
K1—O6ii 2.754 (2)
K1—O7iii 2.655 (3)
K1—O3iv 2.642 (2)
K1—O6 2.756 (3)
Symmetry codes: (i) x, y, z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (iv) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O7 0.82 1.84 2.588 (4) 152
O2—H2⋯O3 0.82 1.87 2.604 (4) 148
Symmetry codes: .

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The biological properties of flavonoids (2-phenylbenzo-γ-pyrone derivatives) are well known (Sakaguchi et al., 1992; Nkengfack et al., 1994; Habtemariam, 1997; Knekt et al., 1997; Ko et al., 1998; Aljancic et al., 1999). The main problem that these compounds present for their use in biological experiments is their poor solubility in water. To overcome this problem, many flavonoidsulfonate derivatives have been synthesized, for example [Ni(H2O)6](C17H13O7S)2.8H2O (Zhang & Wang, 2005a), [Sr(H2O)7(C16H11O4SO3)][C16H11O4SO3].6H2O (Zhang & Wang, 2005b), [Mg(H2O)6](C19H17O4SO3)2].8H2O and [Zn(H2O)6](C19H17O4SO3)2].8H2O (Wang & Zhang, 2005a) and [Co(H2O)6](C19H17O4SO3)2.8H2O (Wang & Zhang, 2005b). Against this background, we report here the solid-state characterization of the potassium salt of 5,7-dihydroxyflavone-8-sulfonate.

The asymmetric unit of title compound consists of one potassium(I) cation and one 5,7-dihydroxyflavone-8-sulfonate anion (Fig. 1). The cation has a distorted coordination geometry and is coordinated by four sulfonate O atoms (O5i, O6, O6ii, and O7iii; symmetry codes: (i) x, y, z + 1; (ii) x, -y + 1/2, z + 1/2; (iii) -x + 1/2, y, z + 1/2) and one carbonyl O atom (O3iv; symmetry code: (iv) -x, -y + 1, -z + 1). The K—O bond distances (Table 1) are in agreement with those found in K+.C16H11O8-.2H2O (Benedict et al., 2004). The flavone skeleton presents the same structure of a corresponding flavonesulfonate ligand reported previously (Li & Zhang, 2008) and is stabilized by intramolecular hydrogen bonds, with O1—H1···O7 = 2.588 (4) Å and O2—H2···O3 = 2.640 (4) Å (Table 2).

As shown in Fig. 2, K1vi (symmetry code: (vi) x, -y + 1/2, z - 1/2) and K1vii (symmetry code: (vii) -x + 1/2, y, z - 1/2) coordinate with O6 and O7viii (symmetry code: (viii) -x + 1/2, -y + 1/2, z) and O6viii and O7, respectively, resulting in a centrosymmetric eight-membered chelate ring that is non-planar. Coordination bonds K1vi–O3ix (symmetry code: (ix) -x, y - 1/2, -z + 1/2) and K1vii–O3x (symmetry code: (x) x + 1/2, -y + 1, -z + 1/2) link the flavone skeletons [C1—C15/O4]ix and [C1—C15/O4]x and the eight-membered ring together to form a two-dimensional sheet-like structure in the ab plane. Another eight-membered chelate ring is built up by O6ii, S1ii, O7ii, K1viii, O6iii, S1iii, O7iii and K1. Two adjacent eight-membered rings are further linked into a one-dimensional polyion chain along the c axis by the coordination bonds K1–O6, K1vii–O5iii, K1viii–O6viii and K1vi–O5ii (Fig. 3). Additionally, π···π stacking interactions (Fig. 2) between centrosymmetrically related pyrone rings may be effective in the stabilization of the three-dimensional polymeric structure, with a centroid-centroid distance of 3.513 (2) Å, a perpendicular interplanar distance of 3.342 (3) Å and a centroid···centroid offset of 1.084 (2) Å.

Related literature top

For biological activities of flavonoids, see: Aljancic et al. (1999); Habtemariam (1997); Knekt et al. (1997); Ko et al. (1998); Nkengfack et al. (1994); Sakaguchi et al. (1992). For related structures, see: Benedict et al. (2004); Li & Zhang (2008); Wang & Zhang (2005a,b); Zhang & Wang (2005a,b).

Experimental top

5,7-dihydroxyflavone (1.0 g, 3.9 mmol) was added slowly to concentrated sulfuric acid (6 ml) with stirring. The reaction was maintained at room temperature for 12 h. Then, the mixture was poured into a KCl saturated aqueous solution (50 ml) and a yellow precipitate appeared. After 5 h, the precipitate was filtered and washed with a KCl saturated aqueous solution until the pH value of the filtrate was 7. The solid product was recrystallized from an ethanol-water (1:1 v/v) solution. Colourless plate-shaped crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent for about 4 d at room temperature (yield 83%).

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, O–H = 0.82 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the potassium(I) cation in the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines. Symmetry codes: (i) x, y, z + 1; (ii) x, -y + 1/2, z + 1/2; (iii) -x + 1/2, y, z + 1/2; (iv) -x, -y + 1, -z + 1.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis, showing the sheet-like structure in the ab plane. The dashed line indicates the ππ stacking interaction. Cg1 is the centroid of the pyrone ring. Symmetry codes: (vi) x, -y + 1/2, z - 1/2; (vii) -x + 1/2, y, z - 1/2; (viii) -x + 1/2, -y + 1/2, z; (ix) -x, y - 1/2, -z + 1/2; (x) x + 1/2, -y + 1, -z + 1/2; (xi) -x, -y + 1, -z.
[Figure 3] Fig. 3. The one-dimensional polyion chain along the c axis in the title compound. Symmetry codes: (ii) x, -y + 1/2, z + 1/2; (iii) -x + 1/2, y, z + 1/2; (vi) x, -y + 1/2, z - 1/2; (vii) -y + 1/2, y, z - 1/2; (viii) -x + 1/2, -y + 1/2, z.
Poly[(µ-5,7-dihydroxy-4-oxo-2-phenyl-4H-chromene-8-sulfonato)potassium(I)] top
Crystal data top
[K(C15H9O7S)]F(000) = 1520
Mr = 372.38Dx = 1.670 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 2056 reflections
a = 19.0846 (19) Åθ = 2.9–20.9°
b = 20.6555 (19) ŵ = 0.54 mm1
c = 7.5148 (7) ÅT = 296 K
V = 2962.3 (5) Å3Plate, colourless
Z = 80.37 × 0.20 × 0.13 mm
Data collection top
Bruker SMART-1000 CCD area-detector
diffractometer
2637 independent reflections
Radiation source: fine-focus sealed tube1746 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2122
Tmin = 0.825, Tmax = 0.933k = 2422
13998 measured reflectionsl = 78
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.091P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2637 reflectionsΔρmax = 0.26 e Å3
220 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: none
Crystal data top
[K(C15H9O7S)]V = 2962.3 (5) Å3
Mr = 372.38Z = 8
Orthorhombic, PccnMo Kα radiation
a = 19.0846 (19) ŵ = 0.54 mm1
b = 20.6555 (19) ÅT = 296 K
c = 7.5148 (7) Å0.37 × 0.20 × 0.13 mm
Data collection top
Bruker SMART-1000 CCD area-detector
diffractometer
2637 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1746 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.933Rint = 0.049
13998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
2637 reflectionsΔρmin = 0.29 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.13853 (4)0.30967 (3)0.70530 (10)0.0614 (3)
S10.15766 (5)0.35454 (4)0.23290 (12)0.0609 (3)
O10.24816 (13)0.46137 (12)0.4226 (4)0.0808 (8)
H10.25610.42410.39130.121*
O20.07320 (14)0.61774 (10)0.4594 (4)0.0757 (8)
H20.03180.62350.43510.114*
O30.04849 (13)0.59352 (11)0.3174 (3)0.0681 (7)
O40.02313 (11)0.41527 (10)0.1793 (3)0.0518 (6)
O50.14317 (13)0.34558 (12)0.0469 (3)0.0711 (7)
O60.11604 (17)0.31214 (11)0.3432 (3)0.0830 (8)
O70.23185 (16)0.34965 (14)0.2716 (4)0.1005 (11)
C10.06796 (17)0.45769 (15)0.2611 (4)0.0483 (8)
C20.13557 (17)0.43436 (15)0.2928 (4)0.0510 (8)
C30.18152 (19)0.47689 (16)0.3815 (4)0.0587 (8)
C40.15971 (19)0.53813 (16)0.4343 (5)0.0637 (9)
H40.19100.56530.49280.076*
C50.09334 (19)0.55884 (15)0.4016 (4)0.0574 (8)
C60.04475 (17)0.51880 (14)0.3107 (4)0.0494 (8)
C70.02559 (19)0.53857 (15)0.2717 (4)0.0555 (9)
C80.06835 (18)0.49192 (16)0.1810 (4)0.0563 (8)
H80.11400.50290.14950.068*
C90.04401 (17)0.43304 (15)0.1409 (4)0.0515 (8)
C100.08112 (18)0.38009 (16)0.0517 (4)0.0571 (8)
C110.1517 (2)0.3838 (2)0.0188 (6)0.0862 (13)
H110.17610.42050.05490.103*
C120.1872 (3)0.3350 (2)0.0658 (8)0.1055 (16)
H120.23520.33840.08570.127*
C130.1515 (3)0.2812 (2)0.1205 (6)0.0930 (14)
H130.17510.24850.18060.112*
C140.0811 (3)0.27500 (18)0.0878 (6)0.0805 (12)
H140.05720.23800.12370.097*
C150.0457 (2)0.32438 (16)0.0007 (4)0.0654 (9)
H150.00190.32020.02290.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0902 (6)0.0465 (5)0.0474 (5)0.0031 (3)0.0002 (4)0.0003 (3)
S10.0824 (7)0.0503 (5)0.0499 (6)0.0108 (4)0.0088 (4)0.0111 (4)
O10.0802 (18)0.0717 (17)0.0906 (19)0.0055 (13)0.0169 (15)0.0260 (15)
O20.110 (2)0.0437 (13)0.0731 (18)0.0056 (13)0.0029 (16)0.0139 (12)
O30.0923 (18)0.0503 (14)0.0618 (15)0.0184 (12)0.0040 (12)0.0021 (11)
O40.0652 (14)0.0425 (12)0.0477 (13)0.0009 (10)0.0000 (10)0.0024 (10)
O50.0899 (17)0.0801 (17)0.0432 (15)0.0097 (13)0.0021 (11)0.0177 (12)
O60.144 (2)0.0461 (14)0.0583 (15)0.0019 (14)0.0097 (16)0.0017 (12)
O70.089 (2)0.089 (2)0.124 (3)0.0313 (16)0.0417 (18)0.0468 (17)
C10.065 (2)0.0459 (18)0.0340 (17)0.0041 (14)0.0040 (14)0.0003 (13)
C20.068 (2)0.0476 (18)0.0368 (17)0.0016 (15)0.0004 (15)0.0012 (14)
C30.074 (2)0.0527 (19)0.050 (2)0.0003 (17)0.0002 (17)0.0027 (16)
C40.082 (3)0.050 (2)0.059 (2)0.0092 (17)0.0038 (18)0.0100 (17)
C50.084 (2)0.0445 (18)0.0434 (19)0.0014 (16)0.0025 (17)0.0013 (15)
C60.069 (2)0.0425 (17)0.0366 (17)0.0021 (15)0.0032 (15)0.0009 (13)
C70.083 (2)0.0437 (18)0.0395 (17)0.0045 (16)0.0111 (16)0.0056 (14)
C80.067 (2)0.055 (2)0.047 (2)0.0026 (16)0.0066 (16)0.0026 (15)
C90.063 (2)0.0546 (19)0.0368 (17)0.0023 (16)0.0067 (15)0.0058 (14)
C100.067 (2)0.056 (2)0.048 (2)0.0070 (16)0.0021 (16)0.0012 (16)
C110.080 (3)0.080 (3)0.099 (3)0.005 (2)0.006 (2)0.021 (3)
C120.081 (3)0.096 (3)0.139 (5)0.013 (3)0.012 (3)0.021 (3)
C130.106 (4)0.088 (3)0.085 (3)0.039 (3)0.015 (3)0.006 (3)
C140.116 (4)0.057 (2)0.069 (3)0.015 (2)0.002 (2)0.0078 (19)
C150.085 (3)0.059 (2)0.052 (2)0.0076 (19)0.0020 (18)0.0029 (17)
Geometric parameters (Å, º) top
K1—O5i2.674 (2)C1—C21.398 (4)
K1—O6ii2.754 (2)C2—C31.409 (5)
K1—O7iii2.655 (3)C3—C41.389 (5)
K1—O3iv2.642 (2)C4—C51.359 (5)
K1—O62.756 (3)C4—H40.9300
K1—S1ii3.4177 (12)C5—C61.418 (4)
S1—O51.437 (2)C6—C71.433 (5)
S1—O61.444 (3)C7—C81.435 (5)
S1—O71.449 (3)C8—C91.336 (4)
S1—C21.760 (3)C8—H80.9300
O1—C31.347 (4)C9—C101.466 (4)
O1—H10.8200C10—C111.371 (5)
O2—C51.348 (4)C10—C151.391 (5)
O2—H20.8200C11—C121.372 (6)
O3—C71.264 (4)C11—H110.9300
O3—K1iv2.642 (2)C12—C131.366 (6)
O4—C91.364 (4)C12—H120.9300
O4—C11.370 (4)C13—C141.372 (6)
O5—K1v2.674 (2)C13—H130.9300
O6—K1vi2.754 (2)C14—C151.387 (5)
O7—K1vii2.655 (3)C14—H140.9300
C1—C61.389 (4)C15—H150.9300
O3iv—K1—O7iii112.50 (9)C5—O2—H2109.5
O3iv—K1—O5i82.73 (7)C7—O3—K1iv152.5 (2)
O7iii—K1—O5i72.70 (8)C9—O4—C1120.6 (2)
O3iv—K1—O6ii127.89 (9)S1—O5—K1v167.47 (15)
O7iii—K1—O6ii111.02 (10)S1—O5—K1vi77.73 (11)
O5i—K1—O6ii84.11 (8)K1v—O5—K1vi94.19 (7)
O3iv—K1—O679.69 (8)S1—O6—K1vi104.63 (13)
O7iii—K1—O6108.95 (10)S1—O6—K1119.49 (16)
O5i—K1—O6161.50 (8)K1vi—O6—K1109.29 (8)
O6ii—K1—O6111.35 (7)S1—O7—K1vii153.43 (16)
O3iv—K1—S1ii145.54 (6)O4—C1—C6120.2 (3)
O7iii—K1—S1ii101.41 (7)O4—C1—C2115.6 (3)
O5i—K1—S1ii102.33 (6)C6—C1—C2124.2 (3)
O6ii—K1—S1ii24.13 (6)C1—C2—C3116.1 (3)
O6—K1—S1ii95.45 (5)C1—C2—S1120.0 (2)
O3iv—K1—O5ii134.72 (7)C3—C2—S1123.8 (3)
O7iii—K1—O5ii109.43 (8)O1—C3—C4115.7 (3)
O5i—K1—O5ii126.38 (7)O1—C3—C2123.2 (3)
O6ii—K1—O5ii43.85 (7)C4—C3—C2121.1 (3)
O6—K1—O5ii71.21 (6)C5—C4—C3120.9 (3)
S1ii—K1—O5ii24.25 (4)C5—C4—H4119.5
O3iv—K1—K1vi111.17 (5)C3—C4—H4119.5
O7iii—K1—K1vi109.12 (6)O2—C5—C4119.4 (3)
O5i—K1—K1vi162.75 (6)O2—C5—C6119.7 (3)
O6ii—K1—K1vi79.25 (6)C4—C5—C6120.9 (3)
O6—K1—K1vi35.35 (5)C1—C6—C5116.8 (3)
S1ii—K1—K1vi60.42 (2)C1—C6—C7120.2 (3)
O5ii—K1—K1vi36.40 (4)C5—C6—C7123.0 (3)
O3iv—K1—K1ii117.97 (5)O3—C7—C8122.4 (3)
O7iii—K1—K1ii90.78 (8)O3—C7—C6121.6 (3)
O5i—K1—K1ii49.41 (6)C8—C7—C6116.0 (3)
O6ii—K1—K1ii35.37 (6)C9—C8—C7121.4 (3)
O6—K1—K1ii146.71 (6)C9—C8—H8119.3
S1ii—K1—K1ii53.48 (2)C7—C8—H8119.3
O5ii—K1—K1ii77.10 (4)C8—C9—O4121.6 (3)
K1vi—K1—K1ii113.47 (3)C8—C9—C10127.9 (3)
O3iv—K1—K1viii160.42 (6)O4—C9—C10110.5 (3)
O7iii—K1—K1viii49.44 (7)C11—C10—C15118.2 (3)
O5i—K1—K1viii96.34 (5)C11—C10—C9121.0 (3)
O6ii—K1—K1viii71.15 (7)C15—C10—C9120.8 (3)
O6—K1—K1viii98.28 (6)C10—C11—C12121.9 (4)
S1ii—K1—K1viii53.85 (2)C10—C11—H11119.1
O5ii—K1—K1viii60.52 (4)C12—C11—H11119.1
K1vi—K1—K1viii74.040 (15)C13—C12—C11119.4 (4)
K1ii—K1—K1viii74.040 (15)C13—C12—H12120.3
O5—S1—O6111.97 (16)C11—C12—H12120.3
O5—S1—O7111.99 (17)C12—C13—C14120.7 (4)
O6—S1—O7112.33 (19)C12—C13—H13119.6
O5—S1—C2108.86 (15)C14—C13—H13119.6
O6—S1—C2106.85 (15)C13—C14—C15119.5 (4)
O7—S1—C2104.36 (16)C13—C14—H14120.3
O5—S1—K1vi78.02 (11)C15—C14—H14120.3
O6—S1—K1vi51.24 (10)C14—C15—C10120.3 (4)
O7—S1—K1vi92.71 (12)C14—C15—H15119.8
C2—S1—K1vi156.86 (12)C10—C15—H15119.8
C3—O1—H1109.5
O6—S1—O5—K1v89.8 (8)O5—S1—C2—C3127.7 (3)
O7—S1—O5—K1v37.4 (8)O6—S1—C2—C3111.2 (3)
C2—S1—O5—K1v152.3 (7)O7—S1—C2—C38.0 (3)
K1vi—S1—O5—K1v50.7 (7)K1vi—S1—C2—C3128.4 (3)
O6—S1—O5—K1vi39.14 (14)C1—C2—C3—O1179.6 (3)
O7—S1—O5—K1vi88.08 (15)S1—C2—C3—O12.9 (5)
C2—S1—O5—K1vi157.05 (13)C1—C2—C3—C40.4 (5)
O5—S1—O6—K1vi52.35 (18)S1—C2—C3—C4176.3 (3)
O7—S1—O6—K1vi74.68 (17)O1—C3—C4—C5179.4 (3)
C2—S1—O6—K1vi171.45 (13)C2—C3—C4—C50.1 (5)
O5—S1—O6—K1175.02 (14)C3—C4—C5—O2178.0 (3)
O7—S1—O6—K148.0 (2)C3—C4—C5—C60.8 (5)
C2—S1—O6—K165.88 (19)O4—C1—C6—C5177.3 (3)
K1vi—S1—O6—K1122.7 (2)C2—C1—C6—C51.0 (4)
O3iv—K1—O6—S186.63 (17)O4—C1—C6—C71.9 (4)
O7iii—K1—O6—S123.78 (19)C2—C1—C6—C7179.7 (3)
O5i—K1—O6—S168.3 (4)O2—C5—C6—C1177.4 (3)
O6ii—K1—O6—S1146.56 (11)C4—C5—C6—C11.3 (5)
S1ii—K1—O6—S1127.83 (16)O2—C5—C6—C71.8 (5)
O5ii—K1—O6—S1128.54 (18)C4—C5—C6—C7179.5 (3)
K1vi—K1—O6—S1120.4 (2)K1iv—O3—C7—C819.5 (6)
K1ii—K1—O6—S1147.10 (9)K1iv—O3—C7—C6161.6 (3)
K1viii—K1—O6—S173.63 (16)C1—C6—C7—O3179.0 (3)
O3iv—K1—O6—K1vi153.01 (12)C5—C6—C7—O30.2 (5)
O7iii—K1—O6—K1vi96.58 (12)C1—C6—C7—C80.0 (4)
O5i—K1—O6—K1vi171.4 (2)C5—C6—C7—C8179.2 (3)
O6ii—K1—O6—K1vi26.21 (19)O3—C7—C8—C9177.0 (3)
S1ii—K1—O6—K1vi7.48 (11)C6—C7—C8—C91.9 (5)
O5ii—K1—O6—K1vi8.18 (9)C7—C8—C9—O42.0 (5)
K1ii—K1—O6—K1vi26.7 (2)C7—C8—C9—C10179.1 (3)
K1viii—K1—O6—K1vi46.72 (11)C1—O4—C9—C80.1 (4)
O5—S1—O7—K1vii24.2 (5)C1—O4—C9—C10179.1 (2)
O6—S1—O7—K1vii102.8 (5)C8—C9—C10—C118.7 (5)
C2—S1—O7—K1vii141.8 (4)O4—C9—C10—C11172.3 (3)
K1vi—S1—O7—K1vii54.0 (5)C8—C9—C10—C15171.8 (3)
C9—O4—C1—C61.9 (4)O4—C9—C10—C157.2 (4)
C9—O4—C1—C2179.6 (2)C15—C10—C11—C121.1 (6)
O4—C1—C2—C3178.2 (3)C9—C10—C11—C12179.5 (4)
C6—C1—C2—C30.2 (5)C10—C11—C12—C130.5 (8)
O4—C1—C2—S11.4 (4)C11—C12—C13—C141.6 (8)
C6—C1—C2—S1177.0 (2)C12—C13—C14—C151.0 (7)
O5—S1—C2—C155.8 (3)C13—C14—C15—C100.6 (6)
O6—S1—C2—C165.3 (3)C11—C10—C15—C141.7 (5)
O7—S1—C2—C1175.5 (3)C9—C10—C15—C14178.9 (3)
K1vi—S1—C2—C148.2 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x, y+1, z+1; (v) x, y, z1; (vi) x, y+1/2, z1/2; (vii) x+1/2, y, z1/2; (viii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O70.821.842.588 (4)152
O2—H2···O30.821.872.604 (4)148

Experimental details

Crystal data
Chemical formula[K(C15H9O7S)]
Mr372.38
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)296
a, b, c (Å)19.0846 (19), 20.6555 (19), 7.5148 (7)
V3)2962.3 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.37 × 0.20 × 0.13
Data collection
DiffractometerBruker SMART1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.825, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
13998, 2637, 1746
Rint0.049
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.152, 1.02
No. of reflections2637
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.29

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
K1—O5i2.674 (2)K1—O3iv2.642 (2)
K1—O6ii2.754 (2)K1—O62.756 (3)
K1—O7iii2.655 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O70.821.842.588 (4)152
O2—H2···O30.821.872.604 (4)148
 

Acknowledgements

Financial support for this work from the Natural Science Foundation of Shaanxi Province (2005B01), the National Basic Research Program of China (973 Program, 2009CB219906), the National Natural Science Foundation of China (20776117) and the Specialized Research Fund for the Doctoralal Program of Higher Education of China (20070698037) are gratefully acknowledged.

References

First citationAljancic, I., Vajs, V., Menkovic, N., Karadzic, I., Juranic, N., Milosavljevic, S. & Macura, S. (1999). J. Nat. Prod. 62, 909–911.  Web of Science PubMed CAS Google Scholar
First citationBenedict, J. B., Bullard, T., Kaminsky, W. & Kahr, B. (2004). Acta Cryst. C60, m551–m553.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHabtemariam, S. (1997). J. Nat. Prod. 60, 775–778.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKnekt, P., Jarvinen, R., Seppanen, R., Heliovaara, M., Pukkala, L. T. & Aromaa, A. (1997). Am. J. Epidemiol. 146, 223–230.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKo, F., Chu, C., Lin, C., Chang, C. & Teng, C. (1998). Biochim. Biophys. Acta, 1389, 81–90.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, W.-W. & Zhang, Z.-T. (2008). Acta Cryst. C64, m176–m178.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNkengfack, A., Vouffo, T., Fomun, Z., Meyer, M. & Bergendorff, S. O. (1994). Phytochemistry, 36, 1047–1051.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSakaguchi, Y., Maehara, Y., Baba, H., Kusumoto, T., Sugimachi, K. & Newmanv, R. A. (1992). Cancer Res. 52, 3306–3309.  PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q.-Y. & Zhang, Z.-T. (2005a). Acta Cryst. C61, m215–m217.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. B. & Zhang, Z. T. (2005b). Z. Kristallogr. New Cryst. Struct. 220, 223–225.  CAS Google Scholar
First citationZhang, Z. T. & Wang, Q. Y. (2005a). Heterocycles, 65, 1947–1956.  CrossRef CAS Google Scholar
First citationZhang, Z. T. & Wang, Q. Y. (2005b). Struct. Chem. 16, 415–420.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m66-m67
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds