organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o132-o133

4,4′-Bipyridinium bis­(perchlorate)–4-amino­benzoic acid–4,4′-bi­pyridine–water (1/4/2/2)

aSchool of Chemistry and the Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bKey Laboratory of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: luoyf2004@yahoo.com.cn

(Received 21 November 2008; accepted 11 December 2008; online 17 December 2008)

In the structure of the title compound, C10H10N22+·2ClO4·4C7H7NO2·2C10H8N2·2H2O, the 4,4′-bipyridinium cation has a crystallographically imposed centre of symmetry. The cation is linked by N—H⋯N hydrogen bonds to adjacent 4,4′-bipyridine mol­ecules, which in turn inter­act via O—H⋯N hydrogen bonds with 4-amino­benzoic acid mol­ecules, forming chains running parallel to [30[\overline{2}]]. The chains are further connected into a three-dimensional network by N—H⋯O and O—H⋯O hydrogen-bonding inter­actions involving the perchlorate anion, the water mol­ecules and the 4-amino­benzoic acid mol­ecules. In addition, ππ stacking inter­actions with centroid–centroid distances ranging from 3.663 (6) to 3.695 (6) Å are present. The O atoms of the perchlorate anion are disordered over two sets of positions, with refined site occupancies of 0.724 (9) and 0.276 (9).

Related literature

For details of the hydrogen-bonding networks formed by 4-amino­benzoic acid and 4,4-bipyridine, see: Clemente & Marzotto (2004[Clemente, D. A. & Marzotto, A. (2004). Acta Cryst. B60, 287-292.]); Hu et al. (2003[Hu, D. H., Huang, W., Gou, S. H., Fang, J. L. & Fun, H. K. (2003). Polyhedron, 22, 2661-2667.]); Yang et al. (2004[Yang, G. P., Wang, Z. Y. & Chen, J. T. (2004). J. Mol. Struct., 707, 223-229.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N22+·2ClO4·4C7H7NO2·2C10H8N2·2H2O

  • Mr = 1254.04

  • Triclinic, [P \overline 1]

  • a = 10.1007 (3) Å

  • b = 10.1105 (4) Å

  • c = 16.5830 (6) Å

  • α = 91.487 (2)°

  • β = 98.529 (3)°

  • γ = 118.500 (2)°

  • V = 1462.68 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 (2) K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: none

  • 18132 measured reflections

  • 5242 independent reflections

  • 3142 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.198

  • S = 1.04

  • 5242 reflections

  • 455 parameters

  • 74 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯N2i 0.89 (4) 1.78 (4) 2.673 (4) 174 (5)
O3—H3C⋯O5ii 0.90 (5) 1.72 (4) 2.609 (4) 168 (5)
O5—H5B⋯O4iii 0.86 (4) 1.93 (4) 2.775 (4) 171 (4)
O5—H5A⋯O2iv 0.852 (11) 1.903 (13) 2.739 (4) 167 (3)
N5—H5C⋯N1 0.90 (5) 1.78 (5) 2.680 (4) 175 (5)
N3—H3A⋯O6 0.86 2.24 3.079 (6) 166
N3—H3A⋯O7′ 0.86 2.31 3.113 (15) 156
N3—H3B⋯O6v 0.86 2.25 3.085 (8) 166
N3—H3B⋯O6′v 0.86 2.09 2.917 (18) 162
N4—H4A⋯O8vi 0.86 2.22 3.028 (10) 157
N4—H4A⋯O8′vi 0.86 2.55 3.351 (19) 156
N4—H4B⋯O8 0.86 2.57 3.174 (13) 129
N4—H4B⋯O8′ 0.86 2.57 3.25 (2) 136
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) x-1, y+1, z; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrogen-bonding interactions between ligands are specific and directional. In this sense, 4-aminobenzoic acid and 4,4-bipyridine are the excellent candidates for the construction of three-dimensional network motifs, as they form regular hydrogen bonds functioning as both hydrogen-bond donors and acceptors (Clemente & Marzotto, 2004; Hu et al., 2003; Yang et al., 2004). Recently, we obtained the title compound under hydrothermal conditions and report its crystal structure herein.

In the title compound (Fig. 1), all bond lengths and angles are unexceptional. The 4,4'-bipyridinium cation, which is located on a centre of symmetry, acts as a N—H hydrogen bond donor on both sides to unprotonated 4,4'-bipyridine molecules, which in turn act as O—H hydrogen bond acceptors from one of the two independent 4-aminobenzoic acid molecules. Two 4-aminobenzoic acid molecules, two 4,4'-bipyridine molecules and the cation are thus connected by hydrogen bonding interactions to form a linear centrosymmetric chain running parallel to the [3 0 2] direction. These chains are further connected by O—H···O and N—H···O hydrogen bonds (Table 1) via the interstitial solvate water molecules, the perchlorate anions and the other 4-aminobenzoic acid molecules, forming a three-dimensional network (Fig. 2). The crystal packing is stabilized by π-π stacking interactions involving both pyridine rings of the unprotonated 4,4'-bipyridine molecule, the N5/C25-C29 pyridine ring of the cation and the C12-C17 benzene ring of one 4-aminobenzoic acid molecule: Cg1···Cg2i = 3.695 (6) Å; Cg1···Cg3 = 3.663 (6) Å; Cg3···Cg4ii = 3.674 (7) Å [Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C1–C5, N2/C6–C10, C12–CC17 and N5/C25–C29 rings, respectively. Symmetry codes: (i) = 1-x, 1-y, -z; (ii) = 1-x, y, z].

Related literature top

For details of the hydrogen-bonding networks formed by 4-aminobenzoic acid and 4,4-bipyridine, see: Clemente & Marzotto (2004); Hu et al. (2003); Yang et al. (2004);

Experimental top

4-Aminobenzoic acid (1 mmol, 0.137 g,), 4,4-bipyridine (1 mmol, 0.156 g,) and sodium perchlorate (1 mmol, 0.123 g,) were dissolved in hot water with stirring. Colourless single crystals were obtained at room temperature by slow evaporation of the solvent over a period of several days.

Refinement top

The disordered perchlorate ion was refined into two sites with refined occupancies of 0.724 (9) and 0.276 (9). The Cl···O and O···O distances were restrained to be 1.44 (1) and 2.35 (1) Å, respectively. Water H atoms were located in a difference Fourier map and refined with distance restraints of O–H = 0.86 Å and H···H = 1.39 Å. The H atom bound to the N5 nitrogen atom in the cation and the carboxylic H atoms were refined with N—H and O—H distance restraints of 0.90 Å. All other H atoms were placed at calculated positions and treated as riding on the parent atoms, with C—H = 0.93\ %A, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme. Displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i)-x, 1-y, 1-z.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.
4,4'-Bipyridinium bis(perchlorate)–4-aminobenzoic acid–4,4'-bipyridine–water (1/4/2/2) top
Crystal data top
C10H10N22+·2ClO4·4C7H7NO2·2C10H8N2·2H2OZ = 1
Mr = 1254.04F(000) = 654
Triclinic, P1Dx = 1.424 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1007 (3) ÅCell parameters from 2787 reflections
b = 10.1105 (4) Åθ = 2.4–21.0°
c = 16.5830 (6) ŵ = 0.19 mm1
α = 91.487 (2)°T = 296 K
β = 98.529 (3)°Block, colourless
γ = 118.500 (2)°0.20 × 0.18 × 0.15 mm
V = 1462.68 (10) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3142 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
Graphite monochromatorθmax = 25.2°, θmin = 2.3°
ϕ and ω scansh = 1211
18132 measured reflectionsk = 1112
5242 independent reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0835P)2 + 0.5543P]
where P = (Fo2 + 2Fc2)/3
5242 reflections(Δ/σ)max < 0.001
455 parametersΔρmax = 0.37 e Å3
74 restraintsΔρmin = 0.41 e Å3
Crystal data top
C10H10N22+·2ClO4·4C7H7NO2·2C10H8N2·2H2Oγ = 118.500 (2)°
Mr = 1254.04V = 1462.68 (10) Å3
Triclinic, P1Z = 1
a = 10.1007 (3) ÅMo Kα radiation
b = 10.1105 (4) ŵ = 0.19 mm1
c = 16.5830 (6) ÅT = 296 K
α = 91.487 (2)°0.20 × 0.18 × 0.15 mm
β = 98.529 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
3142 reflections with I > 2σ(I)
18132 measured reflectionsRint = 0.058
5242 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06674 restraints
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.37 e Å3
5242 reflectionsΔρmin = 0.41 e Å3
455 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4592 (5)0.5702 (4)0.2272 (2)0.0780 (12)
H10.46880.65610.25520.094*
C20.5531 (5)0.5894 (4)0.1716 (2)0.0718 (11)
H20.62350.68660.16270.086*
C30.5438 (3)0.4659 (3)0.12897 (17)0.0445 (7)
C40.4368 (4)0.3262 (4)0.1468 (2)0.0621 (9)
H40.42560.23820.12040.075*
C50.3468 (4)0.3170 (4)0.2035 (2)0.0667 (10)
H50.27580.22160.21450.080*
C60.6445 (3)0.4829 (3)0.06907 (17)0.0454 (7)
C70.7468 (4)0.6237 (4)0.0504 (2)0.0640 (10)
H70.75520.71040.07670.077*
C80.8361 (4)0.6363 (4)0.0067 (2)0.0681 (10)
H80.90440.73290.01760.082*
C90.7333 (5)0.3836 (5)0.0301 (2)0.0774 (12)
H90.72720.29900.05760.093*
C100.6398 (5)0.3613 (4)0.0269 (2)0.0716 (11)
H100.57310.26340.03680.086*
C111.0179 (4)0.5687 (4)0.1962 (2)0.0570 (9)
C120.9160 (4)0.5534 (4)0.25473 (18)0.0504 (8)
C130.8008 (4)0.4134 (4)0.26858 (19)0.0529 (8)
H130.78750.32580.24060.064*
C140.7066 (4)0.4019 (4)0.32255 (19)0.0556 (8)
H140.63040.30700.33070.067*
C150.7238 (4)0.5309 (4)0.3653 (2)0.0566 (9)
C160.8404 (4)0.6714 (4)0.3531 (2)0.0647 (10)
H160.85500.75880.38200.078*
C170.9340 (4)0.6819 (4)0.2984 (2)0.0601 (9)
H171.01080.77670.29040.072*
C180.8014 (5)0.0246 (4)0.0816 (2)0.0625 (9)
C190.7278 (4)0.0094 (3)0.1525 (2)0.0573 (9)
C200.8008 (4)0.0010 (4)0.2290 (2)0.0653 (10)
H200.89630.00660.23400.078*
C210.7339 (5)0.0152 (4)0.2969 (2)0.0713 (11)
H210.78470.02000.34730.086*
C220.5911 (5)0.0244 (4)0.2912 (3)0.0735 (11)
C230.5181 (5)0.0161 (4)0.2145 (3)0.0747 (11)
H230.42260.02160.20940.090*
C240.5850 (4)0.0000 (4)0.1471 (2)0.0644 (10)
H240.53410.00470.09660.077*
C250.2424 (5)0.5900 (5)0.3916 (2)0.0785 (12)
H250.32510.67330.37700.094*
C260.1654 (5)0.6129 (4)0.4471 (2)0.0716 (11)
H260.19510.71070.46890.086*
C270.0433 (3)0.4902 (4)0.47059 (17)0.0466 (7)
C280.0067 (4)0.3484 (4)0.4352 (2)0.0657 (10)
H280.07370.26200.44910.079*
C290.0886 (4)0.3356 (5)0.3799 (2)0.0709 (11)
H290.06230.23960.35670.085*
N10.3567 (3)0.4374 (3)0.24310 (16)0.0579 (7)
N20.8310 (3)0.5191 (4)0.04737 (17)0.0607 (8)
N30.6272 (4)0.5201 (4)0.41820 (18)0.0758 (9)
H3A0.55500.43280.42510.091*
H3B0.63890.60070.44430.091*
N40.5226 (5)0.0444 (5)0.3583 (2)0.1091 (13)
H4A0.56800.05140.40490.131*
H4B0.43420.04990.35400.131*
N50.2031 (4)0.4537 (4)0.35815 (17)0.0598 (8)
O10.9981 (3)0.4406 (3)0.16264 (16)0.0718 (7)
O21.1150 (3)0.6913 (3)0.18048 (17)0.0787 (8)
O30.7226 (3)0.0324 (3)0.01186 (18)0.0793 (8)
O40.9250 (3)0.0302 (3)0.08352 (18)0.0848 (8)
O50.1553 (3)0.9533 (3)0.11791 (17)0.0720 (7)
H1C1.058 (4)0.451 (5)0.126 (2)0.119 (17)*
H3C0.776 (5)0.039 (6)0.028 (2)0.122 (19)*
H5A0.128 (4)0.866 (2)0.133 (2)0.078 (13)*
H5B0.079 (3)0.970 (4)0.111 (3)0.12 (2)*
H5C0.251 (5)0.442 (6)0.319 (2)0.14 (2)*
O60.3808 (7)0.2312 (5)0.4742 (4)0.153 (3)0.724 (9)
O70.2540 (10)0.0812 (8)0.3516 (3)0.158 (3)0.724 (9)
O80.2998 (12)0.0234 (8)0.4681 (6)0.155 (4)0.724 (9)
O90.1258 (8)0.0621 (9)0.4610 (6)0.190 (4)0.724 (9)
Cl10.26368 (13)0.08898 (12)0.43474 (8)0.0877 (4)0.724 (9)
O6'0.265 (2)0.1766 (19)0.5022 (7)0.158 (7)0.276 (9)
O7'0.3803 (16)0.1791 (19)0.3902 (11)0.175 (8)0.276 (9)
O8'0.264 (2)0.0437 (14)0.4533 (12)0.109 (7)0.276 (9)
O9'0.1148 (13)0.0416 (13)0.3755 (9)0.115 (6)0.276 (9)
Cl1'0.26368 (13)0.08898 (12)0.43474 (8)0.0877 (4)0.276 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.101 (3)0.059 (2)0.088 (3)0.041 (2)0.048 (2)0.007 (2)
C20.087 (3)0.048 (2)0.086 (3)0.029 (2)0.045 (2)0.0136 (19)
C30.0441 (17)0.0503 (19)0.0398 (16)0.0236 (15)0.0071 (13)0.0044 (13)
C40.068 (2)0.050 (2)0.067 (2)0.0218 (18)0.0303 (18)0.0017 (16)
C50.065 (2)0.057 (2)0.071 (2)0.0190 (18)0.0278 (18)0.0058 (18)
C60.0450 (17)0.0509 (19)0.0415 (16)0.0240 (15)0.0085 (13)0.0076 (14)
C70.062 (2)0.051 (2)0.070 (2)0.0167 (17)0.0244 (18)0.0000 (17)
C80.057 (2)0.062 (2)0.068 (2)0.0113 (18)0.0246 (18)0.0100 (19)
C90.099 (3)0.066 (3)0.084 (3)0.043 (2)0.051 (2)0.014 (2)
C100.088 (3)0.051 (2)0.086 (3)0.033 (2)0.050 (2)0.0181 (19)
C110.051 (2)0.067 (2)0.053 (2)0.0286 (19)0.0115 (16)0.0133 (18)
C120.0505 (19)0.058 (2)0.0458 (17)0.0287 (17)0.0082 (14)0.0096 (15)
C130.057 (2)0.055 (2)0.0496 (18)0.0293 (17)0.0115 (15)0.0056 (15)
C140.054 (2)0.059 (2)0.0524 (19)0.0248 (17)0.0139 (15)0.0097 (16)
C150.056 (2)0.074 (2)0.0492 (19)0.0380 (19)0.0113 (16)0.0105 (17)
C160.073 (2)0.063 (2)0.066 (2)0.039 (2)0.0136 (19)0.0012 (18)
C170.059 (2)0.054 (2)0.065 (2)0.0247 (17)0.0153 (17)0.0110 (17)
C180.066 (2)0.047 (2)0.077 (3)0.0274 (18)0.018 (2)0.0114 (17)
C190.056 (2)0.0402 (18)0.074 (2)0.0217 (16)0.0126 (17)0.0086 (16)
C200.062 (2)0.057 (2)0.077 (3)0.0304 (19)0.0102 (19)0.0050 (18)
C210.084 (3)0.059 (2)0.069 (2)0.034 (2)0.011 (2)0.0068 (18)
C220.082 (3)0.050 (2)0.089 (3)0.027 (2)0.034 (2)0.014 (2)
C230.061 (2)0.064 (2)0.103 (3)0.031 (2)0.023 (2)0.019 (2)
C240.061 (2)0.056 (2)0.079 (3)0.0292 (18)0.0149 (19)0.0149 (18)
C250.090 (3)0.067 (3)0.083 (3)0.032 (2)0.050 (2)0.017 (2)
C260.088 (3)0.053 (2)0.083 (3)0.033 (2)0.047 (2)0.0095 (18)
C270.0489 (18)0.0546 (19)0.0420 (16)0.0294 (16)0.0090 (13)0.0066 (14)
C280.060 (2)0.056 (2)0.078 (2)0.0229 (18)0.0246 (18)0.0046 (18)
C290.066 (2)0.063 (2)0.077 (3)0.026 (2)0.021 (2)0.0122 (19)
N10.0571 (17)0.067 (2)0.0516 (16)0.0300 (15)0.0159 (13)0.0041 (14)
N20.0552 (17)0.074 (2)0.0550 (17)0.0302 (16)0.0203 (13)0.0093 (15)
N30.073 (2)0.093 (2)0.072 (2)0.0439 (19)0.0284 (17)0.0050 (18)
N40.125 (3)0.118 (3)0.103 (3)0.062 (3)0.060 (3)0.037 (3)
N50.0637 (19)0.077 (2)0.0497 (16)0.0412 (18)0.0156 (14)0.0034 (15)
O10.0788 (18)0.0675 (17)0.0739 (17)0.0323 (14)0.0395 (14)0.0093 (14)
O20.0747 (17)0.0691 (17)0.0948 (19)0.0289 (15)0.0418 (15)0.0247 (15)
O30.0734 (18)0.095 (2)0.0739 (19)0.0426 (16)0.0169 (15)0.0200 (15)
O40.0781 (19)0.101 (2)0.098 (2)0.0563 (17)0.0312 (16)0.0246 (16)
O50.0724 (18)0.0648 (18)0.0782 (18)0.0317 (15)0.0163 (14)0.0169 (14)
O60.165 (5)0.067 (3)0.187 (6)0.018 (3)0.060 (4)0.015 (3)
O70.213 (8)0.156 (5)0.086 (4)0.072 (5)0.043 (4)0.021 (3)
O80.199 (8)0.095 (5)0.177 (7)0.077 (5)0.030 (6)0.017 (4)
O90.148 (6)0.210 (7)0.237 (8)0.084 (5)0.114 (6)0.047 (6)
Cl10.0960 (9)0.0596 (7)0.1150 (10)0.0368 (6)0.0438 (7)0.0144 (6)
O6'0.195 (12)0.143 (10)0.156 (10)0.094 (9)0.056 (8)0.036 (7)
O7'0.172 (11)0.162 (11)0.170 (12)0.048 (8)0.082 (9)0.058 (9)
O8'0.115 (9)0.063 (9)0.145 (11)0.045 (7)0.003 (7)0.037 (7)
O9'0.095 (8)0.096 (8)0.139 (10)0.051 (6)0.030 (7)0.010 (6)
Cl1'0.0960 (9)0.0596 (7)0.1150 (10)0.0368 (6)0.0438 (7)0.0144 (6)
Geometric parameters (Å, º) top
C1—N11.310 (5)C18—C191.456 (5)
C1—C21.371 (5)C19—C241.388 (5)
C1—H10.9300C19—C201.396 (5)
C2—C31.376 (5)C20—C211.372 (5)
C2—H20.9300C20—H200.9300
C3—C41.382 (4)C21—C221.388 (6)
C3—C61.481 (4)C21—H210.9300
C4—C51.378 (5)C22—N41.366 (5)
C4—H40.9300C22—C231.397 (6)
C5—N11.321 (4)C23—C241.365 (5)
C5—H50.9300C23—H230.9300
C6—C101.375 (5)C24—H240.9300
C6—C71.380 (4)C25—N51.318 (5)
C7—C81.371 (5)C25—C261.371 (5)
C7—H70.9300C25—H250.9300
C8—N21.323 (5)C26—C271.385 (5)
C8—H80.9300C26—H260.9300
C9—N21.322 (5)C27—C281.387 (5)
C9—C101.381 (5)C27—C27i1.472 (6)
C9—H90.9300C28—C291.365 (5)
C10—H100.9300C28—H280.9300
C11—O21.224 (4)C29—N51.312 (5)
C11—O11.308 (4)C29—H290.9300
C11—C121.475 (5)N3—H3A0.8600
C12—C171.390 (5)N3—H3B0.8600
C12—C131.391 (5)N4—H4A0.8600
C13—C141.368 (4)N4—H4B0.8600
C13—H130.9300N5—H5C0.90 (5)
C14—C151.390 (5)O1—H1C0.89 (4)
C14—H140.9300O3—H3C0.90 (5)
C15—N31.375 (4)O5—H5A0.852 (11)
C15—C161.391 (5)O5—H5B0.86 (4)
C16—C171.376 (5)O6—Cl11.412 (4)
C16—H160.9300O7—Cl11.365 (4)
C17—H170.9300O8—Cl11.448 (5)
C18—O41.218 (4)O9—Cl11.424 (5)
C18—O31.329 (4)
N1—C1—C2123.6 (3)C24—C19—C20118.0 (3)
N1—C1—H1118.2C24—C19—C18122.5 (3)
C2—C1—H1118.2C20—C19—C18119.5 (3)
C1—C2—C3120.4 (3)C21—C20—C19121.0 (4)
C1—C2—H2119.8C21—C20—H20119.5
C3—C2—H2119.8C19—C20—H20119.5
C2—C3—C4115.7 (3)C20—C21—C22120.8 (4)
C2—C3—C6121.7 (3)C20—C21—H21119.6
C4—C3—C6122.6 (3)C22—C21—H21119.6
C5—C4—C3120.2 (3)N4—C22—C21120.8 (4)
C5—C4—H4119.9N4—C22—C23121.0 (4)
C3—C4—H4119.9C21—C22—C23118.2 (4)
N1—C5—C4123.0 (3)C24—C23—C22120.9 (4)
N1—C5—H5118.5C24—C23—H23119.5
C4—C5—H5118.5C22—C23—H23119.5
C10—C6—C7115.7 (3)C23—C24—C19121.1 (4)
C10—C6—C3122.9 (3)C23—C24—H24119.4
C7—C6—C3121.4 (3)C19—C24—H24119.4
C8—C7—C6120.3 (3)N5—C25—C26122.2 (4)
C8—C7—H7119.8N5—C25—H25118.9
C6—C7—H7119.8C26—C25—H25118.9
N2—C8—C7123.9 (3)C25—C26—C27119.9 (3)
N2—C8—H8118.1C25—C26—H26120.0
C7—C8—H8118.1C27—C26—H26120.0
N2—C9—C10123.3 (3)C26—C27—C28116.4 (3)
N2—C9—H9118.4C26—C27—C27i121.7 (4)
C10—C9—H9118.4C28—C27—C27i121.9 (4)
C6—C10—C9120.5 (3)C29—C28—C27120.0 (3)
C6—C10—H10119.8C29—C28—H28120.0
C9—C10—H10119.8C27—C28—H28120.0
O2—C11—O1122.0 (3)N5—C29—C28122.5 (4)
O2—C11—C12123.2 (3)N5—C29—H29118.8
O1—C11—C12114.8 (3)C28—C29—H29118.8
C17—C12—C13117.9 (3)C1—N1—C5117.1 (3)
C17—C12—C11119.8 (3)C9—N2—C8116.4 (3)
C13—C12—C11122.3 (3)C15—N3—H3A120.0
C14—C13—C12121.3 (3)C15—N3—H3B120.0
C14—C13—H13119.3H3A—N3—H3B120.0
C12—C13—H13119.3C22—N4—H4A120.0
C13—C14—C15120.6 (3)C22—N4—H4B120.0
C13—C14—H14119.7H4A—N4—H4B120.0
C15—C14—H14119.7C29—N5—C25119.1 (3)
N3—C15—C14120.8 (3)C29—N5—H5C120 (4)
N3—C15—C16120.6 (3)C25—N5—H5C121 (4)
C14—C15—C16118.6 (3)C11—O1—H1C114 (3)
C17—C16—C15120.4 (3)C18—O3—H3C108 (3)
C17—C16—H16119.8H5A—O5—H5B110 (4)
C15—C16—H16119.8O7—Cl1—O6111.8 (4)
C16—C17—C12121.2 (3)O7—Cl1—O9114.1 (5)
C16—C17—H17119.4O6—Cl1—O9107.3 (4)
C12—C17—H17119.4O7—Cl1—O8110.9 (4)
O4—C18—O3120.9 (4)O6—Cl1—O8106.6 (5)
O4—C18—C19124.5 (4)O9—Cl1—O8105.7 (5)
O3—C18—C19114.6 (3)
N1—C1—C2—C30.3 (7)C13—C12—C17—C160.5 (5)
C1—C2—C3—C40.5 (6)C11—C12—C17—C16179.7 (3)
C1—C2—C3—C6179.4 (4)O4—C18—C19—C24178.5 (3)
C2—C3—C4—C50.6 (5)O3—C18—C19—C241.6 (5)
C6—C3—C4—C5179.5 (3)O4—C18—C19—C200.3 (5)
C3—C4—C5—N10.1 (6)O3—C18—C19—C20179.6 (3)
C2—C3—C6—C10178.6 (3)C24—C19—C20—C210.3 (5)
C4—C3—C6—C100.3 (5)C18—C19—C20—C21179.2 (3)
C2—C3—C6—C73.3 (5)C19—C20—C21—C220.3 (5)
C4—C3—C6—C7177.8 (3)C20—C21—C22—N4178.3 (4)
C10—C6—C7—C80.2 (5)C20—C21—C22—C230.3 (5)
C3—C6—C7—C8178.4 (3)N4—C22—C23—C24178.3 (4)
C6—C7—C8—N20.4 (6)C21—C22—C23—C240.3 (6)
C7—C6—C10—C90.1 (6)C22—C23—C24—C190.4 (6)
C3—C6—C10—C9178.1 (3)C20—C19—C24—C230.4 (5)
N2—C9—C10—C60.1 (7)C18—C19—C24—C23179.2 (3)
O2—C11—C12—C173.6 (5)N5—C25—C26—C271.0 (7)
O1—C11—C12—C17175.5 (3)C25—C26—C27—C280.0 (6)
O2—C11—C12—C13176.5 (3)C25—C26—C27—C27i179.4 (4)
O1—C11—C12—C134.3 (5)C26—C27—C28—C290.5 (5)
C17—C12—C13—C140.8 (5)C27i—C27—C28—C29178.9 (4)
C11—C12—C13—C14179.3 (3)C27—C28—C29—N50.1 (6)
C12—C13—C14—C150.1 (5)C2—C1—N1—C51.0 (6)
C13—C14—C15—N3178.5 (3)C4—C5—N1—C10.9 (6)
C13—C14—C15—C161.1 (5)C10—C9—N2—C80.0 (6)
N3—C15—C16—C17178.2 (3)C7—C8—N2—C90.3 (6)
C14—C15—C16—C171.4 (5)C28—C29—N5—C250.9 (6)
C15—C16—C17—C120.6 (5)C26—C25—N5—C291.5 (6)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···N2ii0.89 (4)1.78 (4)2.673 (4)174 (5)
O3—H3C···O5iii0.90 (5)1.72 (4)2.609 (4)168 (5)
O5—H5B···O4iv0.86 (4)1.93 (4)2.775 (4)171 (4)
O5—H5A···O2v0.85 (1)1.90 (1)2.739 (4)167 (3)
N5—H5C···N10.90 (5)1.78 (5)2.680 (4)175 (5)
N3—H3A···O60.862.243.079 (6)166
N3—H3A···O70.862.313.113 (15)156
N3—H3B···O6vi0.862.253.085 (8)166
N3—H3B···O6vi0.862.092.917 (18)162
N4—H4A···O8vii0.862.223.028 (10)157
N4—H4A···O8vii0.862.553.351 (19)156
N4—H4B···O80.862.573.174 (13)129
N4—H4B···O80.862.573.25 (2)136
Symmetry codes: (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x1, y+1, z; (v) x1, y, z; (vi) x+1, y+1, z+1; (vii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H10N22+·2ClO4·4C7H7NO2·2C10H8N2·2H2O
Mr1254.04
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.1007 (3), 10.1105 (4), 16.5830 (6)
α, β, γ (°)91.487 (2), 98.529 (3), 118.500 (2)
V3)1462.68 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18132, 5242, 3142
Rint0.058
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.198, 1.04
No. of reflections5242
No. of parameters455
No. of restraints74
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.41

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···N2i0.89 (4)1.78 (4)2.673 (4)174 (5)
O3—H3C···O5ii0.90 (5)1.72 (4)2.609 (4)168 (5)
O5—H5B···O4iii0.86 (4)1.93 (4)2.775 (4)171 (4)
O5—H5A···O2iv0.852 (11)1.903 (13)2.739 (4)167 (3)
N5—H5C···N10.90 (5)1.78 (5)2.680 (4)175 (5)
N3—H3A···O60.862.2373.079 (6)166
N3—H3A···O7'0.862.3083.113 (15)156
N3—H3B···O6v0.862.2453.085 (8)166
N3—H3B···O6'v0.862.0872.917 (18)162
N4—H4A···O8vi0.862.2163.028 (10)157
N4—H4A···O8'vi0.862.5453.351 (19)156
N4—H4B···O80.862.5653.174 (13)129
N4—H4B···O8'0.862.5713.25 (2)136
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z; (iii) x1, y+1, z; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationClemente, D. A. & Marzotto, A. (2004). Acta Cryst. B60, 287–292.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHu, D. H., Huang, W., Gou, S. H., Fang, J. L. & Fun, H. K. (2003). Polyhedron, 22, 2661–2667.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, G. P., Wang, Z. Y. & Chen, J. T. (2004). J. Mol. Struct., 707, 223–229.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o132-o133
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds