organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o198-o199

(E,E)-Methyl 2-[(3-nitro­benzyl­idene)­amino­methyl]-3-phenylpropenoate

aDepto. de Química - UFSC, 88040-900 - Florianópolis, SC, Brazil
*Correspondence e-mail: adajb@qmc.ufsc.br

(Received 2 December 2008; accepted 19 December 2008; online 24 December 2008)

The mol­ecule of the title compound, C18H16N2O4, adopts a T-shaped conformation with E stereochemistry for the imine double bond. The (3-nitro­benzyl­idene)amino fragment is almost planar, the mean planes of phenyl ring and nitro group forming a dihedral angle of 8.9 (3)°. In the 3-phenyl­acryloyl unit, the acrylic ester fragment is also almost planar, with the phenyl ring twisted by 41.44 (7)°. In the crystal, the mol­ecules are linked by C—H⋯O hydrogen-bond inter­actions into chains running parallel to [01[\overline{1}]].

Related literature

For general background to the chemistry of Morita–Baylis–Hillman adducts, see: Singh & Batra (2008[Singh, V. & Batra, S. (2008). Tetrahedron, 64, 4511-4574.]); Masson et al. (2007[Masson, G., Housseman, C. & Zhu, J. (2007). Angew. Chem. Int. Ed. 46, 4614-4628.]); Basavaiah et al. (2003[Basavaiah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811-891.]). For background to this study, see: Bortoluzzi et al. (2006[Bortoluzzi, A. J., Fernandes, L. & Sá, M. M. (2006). Acta Cryst. E62, o3391-o3392.]); Fernandes et al. (2004[Fernandes, L., Bortoluzzi, A. J. & Sá, M. M. (2004). Tetrahedron, 60, 9983-9989.]); Sá et al. (2006[Sá, M. M., Ramos, M. D. & Fernandes, L. (2006). Tetrahedron, 62, 11652-11656.], 2007[Sá, M. M., Meier, L., Fernandes, L. & Pergher, S. B. C. (2007). Catal. Commun. 8, 1625-1629.], 2008[Sá, M. M., Fernandes, L., Ferreira, M. & Bortoluzzi, A. J. (2008). Tetrahedron Lett. 49, 1228-1232.]). For the synthesis, see: Sá (2003[Sá, M. M. (2003). J. Braz. Chem. Soc. 14, 1005-1010.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); and of MOGUL, see: Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O4

  • Mr = 324.33

  • Triclinic, [P \overline 1]

  • a = 8.6035 (12) Å

  • b = 8.7829 (14) Å

  • c = 12.4680 (14) Å

  • α = 79.275 (18)°

  • β = 76.526 (13)°

  • γ = 63.158 (14)°

  • V = 813.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.50 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3026 measured reflections

  • 2883 independent reflections

  • 2165 reflections with > 2σ (I)

  • Rint = 0.024

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.09

  • 2883 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O15i 0.93 2.55 3.307 (3) 139
Symmetry code: (i) x, y+1, z-1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996[Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nitrogen-containing building blocks derived from α-methylene-β-hydroxy esters (Morita-Baylis-Hillman adducts) have been widely employed in modern organic chemistry for the synthesis of natural products and heterocycles of biological relevance (Singh & Batra, 2008; Masson et al., 2007; Basavaiah et al., 2003). During our studies on the Morita-Baylis-Hillman reaction (Bortoluzzi et al., 2006; Fernandes et al., 2004; Sá et al., 2006; Sá et al., 2007; Sá et al., 2008), we reported the high-yield preparation of N-allylic imine (I) (Scheme 1) and analogs by a tandem Staudinger/Aza-Wittig process involving allyl azide (II) and a combination of triphenylphosphine and 3-nitrobenzaldehyde (Sá, 2003). In spite of the full chemical characterization described for the multifunctional compound (I), the stereochemistry of the imine double bond could not be unambiguously elucidated and was tentatively assigned as being E on the basis of the available data (Sá, 2003).

The molecular structure of the title compound adopts a T-shaped conformation (Fig. 1). The E stereochemistry for the imine double bond was unambiguously elucidated by X-ray analysis. The torsion angles N2—C1—C11—C12 of -8.2 (3)° and C12—C13—N13—O14 of 9.2 (3)° demonstrate that the (3-nitrobenzylidene)amino moiety is almost planar. The plane of the nitro group deviates of 8.9 (3)° with respect to the mean plane of the parent phenyl ring. In the 3-phenylacryloyl moiety, the acrylic ester fragment is also almost planar with as indicated by the C5–C4–C6–O7 torsion angle of 175.67 (18)°, whereas the phenyl ring is twisted by 41.44 (7)°, probably due to steric effect. This observation indicates that the vinyl CC double bond is strongly conjugated with the carboxyl group instead that with the aromatic phenyl ring. A search using Mogul (Bruno et al., 2004) based on the CCDC system (version 5.29; Allen, 2002) revealed that the bond lengths found in the structure of (I) are within the expected range for organic compounds. In the crystal packing, molecules are linked by intermolecular C—H···O hydrogen bonding interactions (Table 1) to form chains running parallel to the [0 1 1] direction (Fig. 2).

Related literature top

For general background to the chemistry of Morita–Baylis–Hillman adducts, see: Singh & Batra (2008); Masson et al. (2007); Basavaiah et al. (2003). For background to this study, see: Bortoluzzi et al. (2006); Fernandes et al. (2004); Sá et al. (2006; 2007, 2008). For the synthesis, see:Sá (2003). For a description of the Cambridge Structural Database, see: Allen (2002); and of MOGUL, see: Bruno et al. (2004).

Experimental top

Allyl imine (I) was prepared as previously described (Sá, 2003). Allyl azide (II) and triphenylphosphine (1.0 mmol each) were stirred in anhydrous CHCl3 (3.0 ml) and after evolution of N2 has ceased, 3-nitrobenzaldehyde (1.0 mmol) was added and the mixture was stirred for further 20 h at room temperature. Concentration of the final mixture and separation of triphenylphosphine oxide by crystallization from ethyl ether furnished a white solid (84% yield). A careful recrystallization from ethyl acetate/hexane (1:3 v/v) provided crystals (mp 114.3–115.3 °C) suitable for X-ray crystallographic analysis.

Refinement top

All H atoms were placed at idealized positions and refined as riding, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: SET4 in CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the labeling scheme. Displacement ellipsoids are shown at the 40% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound showing the formation of chains parallel to the [0 1 1] direction. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Reaction scheme.
(E,E)-Methyl 2-[(3-nitrobenzylidene)aminomethyl]-3-phenylpropenoate top
Crystal data top
C18H16N2O4Z = 2
Mr = 324.33F(000) = 340
Triclinic, P1Dx = 1.323 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.6035 (12) ÅCell parameters from 25 reflections
b = 8.7829 (14) Åθ = 5.3–16.7°
c = 12.4680 (14) ŵ = 0.10 mm1
α = 79.275 (18)°T = 293 K
β = 76.526 (13)°Irregular block, colorless
γ = 63.158 (14)°0.50 × 0.30 × 0.20 mm
V = 813.9 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.024
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 1.7°
Graphite monochromatorh = 109
ω–2θ scansk = 1010
3026 measured reflectionsl = 140
2883 independent reflections3 standard reflections every 200 reflections
2165 reflections with > 2σ (I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1527P]
where P = (Fo2 + 2Fc2)/3
2883 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H16N2O4γ = 63.158 (14)°
Mr = 324.33V = 813.9 (2) Å3
Triclinic, P1Z = 2
a = 8.6035 (12) ÅMo Kα radiation
b = 8.7829 (14) ŵ = 0.10 mm1
c = 12.4680 (14) ÅT = 293 K
α = 79.275 (18)°0.50 × 0.30 × 0.20 mm
β = 76.526 (13)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.024
3026 measured reflections3 standard reflections every 200 reflections
2883 independent reflections intensity decay: 1%
2165 reflections with > 2σ (I)
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.09Δρmax = 0.17 e Å3
2883 reflectionsΔρmin = 0.22 e Å3
218 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1755 (2)0.5606 (2)0.77725 (14)0.0470 (4)
H10.16480.66150.79830.056*
N20.1722 (2)0.55429 (18)0.67793 (12)0.0492 (4)
C30.1642 (3)0.7065 (2)0.60179 (15)0.0514 (5)
H3A0.27000.67410.54590.062*
H3B0.16270.79080.64300.062*
C40.0043 (2)0.7874 (2)0.54518 (14)0.0465 (4)
C50.0074 (2)0.7661 (2)0.44100 (14)0.0488 (4)
H50.09600.83300.41210.059*
C60.1594 (3)0.9030 (2)0.61246 (15)0.0515 (5)
O70.1704 (2)0.91839 (19)0.70815 (11)0.0734 (4)
O80.29582 (18)0.98968 (18)0.55747 (11)0.0639 (4)
C90.4579 (3)1.1040 (3)0.6204 (2)0.0796 (7)
H9A0.49231.04110.68550.119*
H9B0.54931.15320.57580.119*
H9C0.43981.19360.64160.119*
C110.1958 (2)0.4135 (2)0.86183 (14)0.0446 (4)
C120.1900 (2)0.2681 (2)0.83818 (13)0.0434 (4)
H120.17260.26100.76870.052*
C130.2104 (2)0.1340 (2)0.91989 (14)0.0471 (4)
N130.2048 (2)0.01950 (19)0.89347 (14)0.0573 (4)
O140.2052 (2)0.03191 (17)0.79774 (13)0.0745 (5)
O150.2022 (3)0.13071 (19)0.96882 (14)0.0879 (5)
C140.2357 (3)0.1386 (3)1.02445 (15)0.0579 (5)
H140.24870.04651.07800.069*
C150.2412 (3)0.2832 (3)1.04694 (16)0.0625 (5)
H150.25820.28961.11660.075*
C160.2215 (3)0.4193 (3)0.96652 (15)0.0555 (5)
H160.22550.51630.98290.067*
C210.1565 (2)0.6482 (2)0.36716 (14)0.0465 (4)
C220.1946 (3)0.7024 (2)0.25635 (15)0.0546 (5)
H220.12520.81330.22940.066*
C230.3330 (3)0.5951 (3)0.18584 (17)0.0615 (5)
H230.35780.63450.11220.074*
C240.4353 (3)0.4296 (3)0.22366 (18)0.0631 (5)
H240.52840.35670.17580.076*
C250.3986 (3)0.3727 (3)0.33283 (19)0.0660 (6)
H250.46710.26070.35850.079*
C260.2610 (3)0.4802 (2)0.40479 (17)0.0575 (5)
H260.23790.44050.47850.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0563 (11)0.0396 (9)0.0488 (10)0.0228 (8)0.0137 (8)0.0000 (7)
N20.0628 (9)0.0407 (8)0.0475 (9)0.0251 (7)0.0172 (7)0.0061 (6)
C30.0672 (12)0.0433 (10)0.0499 (10)0.0310 (9)0.0165 (9)0.0089 (8)
C40.0590 (11)0.0372 (9)0.0456 (10)0.0253 (8)0.0114 (8)0.0066 (7)
C50.0529 (10)0.0424 (9)0.0495 (10)0.0203 (8)0.0123 (8)0.0039 (7)
C60.0668 (12)0.0407 (9)0.0452 (10)0.0263 (9)0.0070 (9)0.0059 (8)
O70.0964 (11)0.0643 (9)0.0464 (8)0.0243 (8)0.0094 (7)0.0052 (7)
O80.0579 (8)0.0640 (9)0.0542 (8)0.0156 (7)0.0047 (6)0.0037 (6)
C90.0652 (14)0.0729 (15)0.0783 (16)0.0156 (12)0.0041 (11)0.0130 (12)
C110.0488 (10)0.0412 (9)0.0426 (9)0.0192 (8)0.0077 (7)0.0012 (7)
C120.0486 (10)0.0415 (9)0.0377 (9)0.0174 (8)0.0083 (7)0.0019 (7)
C130.0512 (10)0.0381 (9)0.0462 (10)0.0161 (8)0.0066 (8)0.0008 (7)
N130.0659 (10)0.0370 (8)0.0624 (10)0.0180 (7)0.0122 (8)0.0017 (7)
O140.1120 (13)0.0471 (8)0.0688 (10)0.0313 (8)0.0292 (9)0.0051 (7)
O150.1339 (15)0.0511 (9)0.0784 (11)0.0470 (10)0.0178 (10)0.0146 (8)
C140.0723 (13)0.0535 (11)0.0439 (10)0.0271 (10)0.0127 (9)0.0088 (8)
C150.0845 (15)0.0690 (13)0.0398 (10)0.0371 (11)0.0171 (10)0.0012 (9)
C160.0724 (13)0.0543 (11)0.0467 (10)0.0325 (10)0.0109 (9)0.0047 (8)
C210.0509 (10)0.0436 (9)0.0493 (10)0.0228 (8)0.0130 (8)0.0018 (8)
C220.0623 (12)0.0505 (11)0.0479 (10)0.0202 (9)0.0164 (9)0.0015 (8)
C230.0650 (12)0.0672 (13)0.0484 (11)0.0253 (11)0.0078 (9)0.0065 (9)
C240.0579 (12)0.0596 (12)0.0693 (14)0.0199 (10)0.0076 (10)0.0179 (10)
C250.0702 (13)0.0401 (10)0.0814 (15)0.0167 (10)0.0171 (11)0.0040 (10)
C260.0683 (12)0.0432 (10)0.0593 (12)0.0253 (9)0.0111 (9)0.0034 (8)
Geometric parameters (Å, º) top
C1—N21.257 (2)C13—C141.381 (3)
C1—C111.478 (2)C13—N131.470 (2)
C1—H10.9300N13—O141.218 (2)
N2—C31.473 (2)N13—O151.227 (2)
C3—C41.509 (2)C14—C151.373 (3)
C3—H3A0.9700C14—H140.9300
C3—H3B0.9700C15—C161.383 (3)
C4—C51.339 (2)C15—H150.9300
C4—C61.481 (3)C16—H160.9300
C5—C211.473 (2)C21—C221.389 (3)
C5—H50.9300C21—C261.395 (3)
C6—O71.203 (2)C22—C231.373 (3)
C6—O81.342 (2)C22—H220.9300
O8—C91.445 (2)C23—C241.376 (3)
C9—H9A0.9600C23—H230.9300
C9—H9B0.9600C24—C251.375 (3)
C9—H9C0.9600C24—H240.9300
C11—C161.387 (2)C25—C261.382 (3)
C11—C121.388 (2)C25—H250.9300
C12—C131.380 (2)C26—H260.9300
C12—H120.9300
N2—C1—C11122.48 (16)C12—C13—N13118.04 (16)
N2—C1—H1118.8C14—C13—N13119.12 (16)
C11—C1—H1118.8O14—N13—O15122.86 (17)
C1—N2—C3116.16 (15)O14—N13—C13118.70 (15)
N2—C3—C4113.24 (14)O15—N13—C13118.44 (17)
N2—C3—H3A108.9C15—C14—C13118.01 (17)
C4—C3—H3A108.9C15—C14—H14121.0
N2—C3—H3B108.9C13—C14—H14121.0
C4—C3—H3B108.9C14—C15—C16120.37 (18)
H3A—C3—H3B107.7C14—C15—H15119.8
C5—C4—C6121.26 (17)C16—C15—H15119.8
C5—C4—C3124.23 (17)C15—C16—C11121.17 (18)
C6—C4—C3114.43 (16)C15—C16—H16119.4
C4—C5—C21127.15 (17)C11—C16—H16119.4
C4—C5—H5116.4C22—C21—C26118.14 (17)
C21—C5—H5116.4C22—C21—C5120.03 (16)
O7—C6—O8122.52 (18)C26—C21—C5121.82 (16)
O7—C6—C4123.31 (18)C23—C22—C21121.17 (18)
O8—C6—C4114.17 (16)C23—C22—H22119.4
C6—O8—C9115.78 (16)C21—C22—H22119.4
O8—C9—H9A109.5C22—C23—C24120.28 (19)
O8—C9—H9B109.5C22—C23—H23119.9
H9A—C9—H9B109.5C24—C23—H23119.9
O8—C9—H9C109.5C25—C24—C23119.5 (2)
H9A—C9—H9C109.5C25—C24—H24120.3
H9B—C9—H9C109.5C23—C24—H24120.3
C16—C11—C12118.96 (16)C24—C25—C26120.70 (19)
C16—C11—C1120.11 (16)C24—C25—H25119.7
C12—C11—C1120.93 (15)C26—C25—H25119.7
C13—C12—C11118.65 (16)C25—C26—C21120.21 (19)
C13—C12—H12120.7C25—C26—H26119.9
C11—C12—H12120.7C21—C26—H26119.9
C12—C13—C14122.84 (17)
C11—C1—N2—C3175.74 (16)C14—C13—N13—O14170.73 (18)
C1—N2—C3—C4121.34 (18)C12—C13—N13—O15171.67 (17)
N2—C3—C4—C5101.1 (2)C14—C13—N13—O158.4 (3)
N2—C3—C4—C682.07 (19)C12—C13—C14—C150.2 (3)
C6—C4—C5—C21175.96 (15)N13—C13—C14—C15179.74 (18)
C3—C4—C5—C217.5 (3)C13—C14—C15—C160.1 (3)
C5—C4—C6—O7175.67 (18)C14—C15—C16—C110.0 (3)
C3—C4—C6—O77.4 (2)C12—C11—C16—C150.0 (3)
C5—C4—C6—O84.2 (2)C1—C11—C16—C15179.85 (18)
C3—C4—C6—O8172.71 (14)C4—C5—C21—C22138.14 (19)
O7—C6—O8—C90.2 (3)C4—C5—C21—C2642.9 (3)
C4—C6—O8—C9179.94 (16)C26—C21—C22—C231.1 (3)
N2—C1—C11—C16171.68 (18)C5—C21—C22—C23179.90 (17)
N2—C1—C11—C128.2 (3)C21—C22—C23—C241.2 (3)
C16—C11—C12—C130.1 (3)C22—C23—C24—C250.5 (3)
C1—C11—C12—C13179.71 (16)C23—C24—C25—C260.3 (3)
C11—C12—C13—C140.3 (3)C24—C25—C26—C210.4 (3)
C11—C12—C13—N13179.70 (15)C22—C21—C26—C250.3 (3)
C12—C13—N13—O149.2 (3)C5—C21—C26—C25179.29 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O15i0.932.553.307 (3)139
Symmetry code: (i) x, y+1, z1.

Experimental details

Crystal data
Chemical formulaC18H16N2O4
Mr324.33
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6035 (12), 8.7829 (14), 12.4680 (14)
α, β, γ (°)79.275 (18), 76.526 (13), 63.158 (14)
V3)813.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [ > 2σ (I)] reflections
3026, 2883, 2165
Rint0.024
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.09
No. of reflections2883
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.22

Computer programs: , SET4 in CAD-4 Software (Enraf–Nonius, 1989), HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003); Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O15i0.932.553.307 (3)139.0
Symmetry code: (i) x, y+1, z1.
 

Acknowledgements

The authors are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC) for financial assistance.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBasavaiah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811–891.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBortoluzzi, A. J., Fernandes, L. & Sá, M. M. (2006). Acta Cryst. E62, o3391–o3392.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFernandes, L., Bortoluzzi, A. J. & Sá, M. M. (2004). Tetrahedron, 60, 9983–9989.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMasson, G., Housseman, C. & Zhu, J. (2007). Angew. Chem. Int. Ed. 46, 4614–4628.  Web of Science CrossRef CAS Google Scholar
First citationSá, M. M. (2003). J. Braz. Chem. Soc. 14, 1005–1010.  Google Scholar
First citationSá, M. M., Fernandes, L., Ferreira, M. & Bortoluzzi, A. J. (2008). Tetrahedron Lett. 49, 1228–1232.  Google Scholar
First citationSá, M. M., Meier, L., Fernandes, L. & Pergher, S. B. C. (2007). Catal. Commun. 8, 1625–1629.  Web of Science CrossRef Google Scholar
First citationSá, M. M., Ramos, M. D. & Fernandes, L. (2006). Tetrahedron, 62, 11652–11656.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. & Batra, S. (2008). Tetrahedron, 64, 4511–4574.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o198-o199
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds