organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Nitro­benzaldehyde thio­semicarbazone

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wudh1971@sohu.com

(Received 4 December 2008; accepted 15 December 2008; online 20 December 2008)

The mol­ecule of the title compound, C8H8N4O2S, adopts an E configuration about both the C—N bonds. In the crystal structure, adjacent mol­ecules are linked by inter­molecular N—H⋯S hydrogen-bonding inter­actions, forming chains running parallel to the b axis.

Related literature

For general background to thio­semicarbazone compounds, see: Casas et al. (2000[Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]); Tarafder et al. (2000[Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456-460.]); Deschamps et al. (2003[Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366-7368.]); Liu et al. (1999[Liu, Z.-H., Duan, C.-Y., Hu, J. & You, X.-Z. (1999). Inorg. Chem. 38, 1719-1724.]); Wu et al. (2000[Wu, D.-H., He, C., Duan, C.-Y. & You, X.-Z. (2000). Acta Cryst. C56, 1336-1337.]). For similar structures, see: Sutton (1965[Sutton, L. E. (1965). Tables of Interatomic Distances and Configurations in Molecules and Ions, Special Publication No. 18. London: The Chemical Society.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N4O2S

  • Mr = 224.25

  • Monoclinic, P 21 /c

  • a = 13.276 (3) Å

  • b = 8.225 (7) Å

  • c = 10.491 (4) Å

  • β = 112.78 (5)°

  • V = 1056.2 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 291 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.930, Tmax = 0.940

  • 9317 measured reflections

  • 2071 independent reflections

  • 1343 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.117

  • S = 1.01

  • 2071 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯S1i 0.86 2.56 3.369 (4) 158
N2—H2B⋯S1ii 0.86 2.56 3.394 (4) 165
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiosemicarbazones constitute an important class of N, S donor ligands with their propensity to react with a wide range of metals (Casas et al., 2000). Schiff bases show potential activity as antimicrobial and anticancer agents (Tarafder et al., 2000; Deschamps et al., 2003) and so have biochemical and pharmacological applications. It has been postulated that extensive electron delocalization in the thiosemicarbazone moiety helps the free thiosemicarbazone ligands and their metal complexes to exhibit SHG (second harmonic generation) efficiency (Liu et al., 1999; Wu et al., 2000). As part of a research on non-linear optical materials, specifically thiosemicarbazones and their metal complexes, we report here the crystal structure of a new Schiff base compound derived from thiosemicarbazide and 3-nitrobenzaldehyde.

In the title compound (Fig. 1), the thiosemicarbazone moiety is nearly planar (maximum deviation 0.077 (3) Å for atom N2) and shows an E configuration about the C2—N3 bond. The molecule is not strictly planar, the dihedral angle between the thiosemicarbazone moiety and the phenyl ring being 13.45 (12)°. The C—S bond distance of 1.695 (3) Å agrees well with similar bonds in related compounds, being intermediate between 1.82 Å for a C—S single bond and 1.56 Å for a C=S double bond (Sutton, 1965). The C1—N2 bond distance (1.346 (4) Å) is indicative of some double-bond character, suggesting extensive electron delocalization in the whole molecule. In the crystal packing, adjacent molecules are linked by intermolecular N—H···S hydrogen bonds (Table 1) to form chains running parallel to the b axis.

Related literature top

For general background to thiosemicarbazone compounds, see: Casas et al. (2000); Tarafder et al. (2000); Deschamps et al. (2003); Liu et al. (1999); Wu et al. (2000). For similar structures, see: Sutton (1965).

Experimental top

The title compound was synthesized by refluxing 3-nitrobenzaldehyde (6.04 g, 4 mmol) and thiosemicarbazide (0.37 g, 4 mmol) in absolute ethanol (30 ml) for 8 h. After cooling to room temperature, the yellow solid formed was isolated and dried under vacuum (0.76 g, yield 85%). Single crystals suitable for X-ray structure analysis were obtained by slow evaporation of an ethanol solution in air.

Refinement top

H atoms were placed at calculated positions (N—H = 0.86 Å, C—H = 0.93 Å), and refined using the riding model approximation, with Uiso(H) = 1.2 Ueq (C, N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
3-Nitrobenzaldehyde thiosemicarbazone top
Crystal data top
C8H8N4O2SF(000) = 464
Mr = 224.25Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1712 reflections
a = 13.276 (3) Åθ = 3.0–27.4°
b = 8.225 (7) ŵ = 0.29 mm1
c = 10.491 (4) ÅT = 291 K
β = 112.78 (5)°Block, yellow
V = 1056.2 (11) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
2071 independent reflections
Radiation source: fine-focus sealed tube1343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.0°
CCD_Profile_fitting scansh = 1616
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.930, Tmax = 0.940l = 1212
9317 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0122P)2 + 1.5479P]
where P = (Fo2 + 2Fc2)/3
2071 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C8H8N4O2SV = 1056.2 (11) Å3
Mr = 224.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.276 (3) ŵ = 0.29 mm1
b = 8.225 (7) ÅT = 291 K
c = 10.491 (4) Å0.20 × 0.20 × 0.20 mm
β = 112.78 (5)°
Data collection top
Rigaku Mercury2
diffractometer
2071 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1343 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.940Rint = 0.081
9317 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
2071 reflectionsΔρmin = 0.18 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9248 (3)1.1141 (4)1.1340 (3)0.0416 (8)
C20.8132 (3)0.8365 (4)0.8634 (3)0.0444 (9)
H2A0.84060.74290.91490.053*
C30.7415 (3)0.8218 (4)0.7163 (3)0.0412 (9)
C40.7111 (3)0.6666 (4)0.6615 (3)0.0441 (9)
H4A0.73750.57430.71530.053*
C50.6401 (3)0.6545 (5)0.5237 (4)0.0476 (10)
C60.5984 (3)0.7864 (5)0.4403 (4)0.0584 (11)
H6A0.55010.77330.34900.070*
C70.6301 (3)0.9401 (5)0.4955 (4)0.0603 (12)
H7A0.60361.03140.44040.072*
C80.7017 (3)0.9588 (5)0.6334 (4)0.0512 (10)
H8A0.72291.06220.66970.061*
N10.8999 (3)1.2497 (4)1.0619 (3)0.0572 (10)
H1A0.86911.24600.97320.069*
H1B0.91451.34201.10360.069*
N20.9000 (2)0.9732 (3)1.0633 (3)0.0425 (8)
H2B0.92220.88231.10550.051*
N30.8385 (2)0.9751 (3)0.9216 (3)0.0411 (7)
N40.6100 (3)0.4887 (5)0.4659 (4)0.0656 (10)
O10.6466 (3)0.3718 (4)0.5411 (4)0.0905 (11)
O20.5489 (3)0.4772 (5)0.3440 (3)0.1039 (13)
S10.98388 (9)1.10945 (12)1.30902 (9)0.0529 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (2)0.038 (2)0.0381 (19)0.0034 (18)0.0136 (17)0.0019 (17)
C20.048 (2)0.041 (2)0.0373 (19)0.0029 (18)0.0093 (17)0.0012 (17)
C30.045 (2)0.044 (2)0.0326 (18)0.0016 (17)0.0121 (17)0.0025 (16)
C40.043 (2)0.047 (2)0.041 (2)0.0013 (17)0.0138 (18)0.0016 (17)
C50.038 (2)0.056 (3)0.047 (2)0.0044 (18)0.0144 (18)0.0142 (19)
C60.048 (3)0.077 (3)0.040 (2)0.003 (2)0.007 (2)0.008 (2)
C70.063 (3)0.061 (3)0.046 (2)0.016 (2)0.010 (2)0.009 (2)
C80.054 (3)0.047 (2)0.045 (2)0.0008 (19)0.0120 (19)0.0025 (18)
N10.084 (3)0.0394 (19)0.0371 (17)0.0042 (17)0.0120 (18)0.0012 (14)
N20.054 (2)0.0345 (17)0.0332 (16)0.0005 (14)0.0102 (15)0.0003 (13)
N30.0443 (19)0.0418 (18)0.0335 (15)0.0040 (14)0.0110 (14)0.0023 (13)
N40.056 (3)0.076 (3)0.063 (3)0.017 (2)0.022 (2)0.029 (2)
O10.107 (3)0.056 (2)0.095 (3)0.016 (2)0.024 (2)0.0196 (19)
O20.104 (3)0.110 (3)0.069 (2)0.028 (2)0.003 (2)0.042 (2)
S10.0735 (7)0.0436 (5)0.0345 (5)0.0028 (5)0.0130 (5)0.0035 (4)
Geometric parameters (Å, º) top
C1—N11.316 (4)C6—C71.386 (5)
C1—N21.346 (4)C6—H6A0.9300
C1—S11.695 (3)C7—C81.398 (5)
C2—N31.276 (4)C7—H7A0.9300
C2—C31.471 (4)C8—H8A0.9300
C2—H2A0.9300N1—H1A0.8600
C3—C41.394 (5)N1—H1B0.8600
C3—C81.396 (5)N2—N31.392 (4)
C4—C51.391 (5)N2—H2B0.8600
C4—H4A0.9300N4—O11.219 (5)
C5—C61.369 (5)N4—O21.225 (4)
C5—N41.483 (5)
N1—C1—N2117.4 (3)C7—C6—H6A120.9
N1—C1—S1123.3 (3)C6—C7—C8120.5 (4)
N2—C1—S1119.3 (3)C6—C7—H7A119.8
N3—C2—C3121.3 (3)C8—C7—H7A119.8
N3—C2—H2A119.4C3—C8—C7119.9 (4)
C3—C2—H2A119.4C3—C8—H8A120.1
C4—C3—C8120.2 (3)C7—C8—H8A120.1
C4—C3—C2118.3 (3)C1—N1—H1A120.0
C8—C3—C2121.5 (3)C1—N1—H1B120.0
C5—C4—C3117.8 (3)H1A—N1—H1B120.0
C5—C4—H4A121.1C1—N2—N3119.7 (3)
C3—C4—H4A121.1C1—N2—H2B120.1
C6—C5—C4123.5 (4)N3—N2—H2B120.1
C6—C5—N4119.3 (3)C2—N3—N2116.0 (3)
C4—C5—N4117.2 (4)O1—N4—O2123.5 (4)
C5—C6—C7118.3 (4)O1—N4—C5118.9 (3)
C5—C6—H6A120.9O2—N4—C5117.6 (4)
N3—C2—C3—C4175.8 (4)C2—C3—C8—C7177.4 (4)
N3—C2—C3—C82.5 (6)C6—C7—C8—C30.1 (6)
C8—C3—C4—C50.6 (5)N1—C1—N2—N37.7 (5)
C2—C3—C4—C5177.7 (3)S1—C1—N2—N3171.4 (2)
C3—C4—C5—C60.4 (6)C3—C2—N3—N2175.3 (3)
C3—C4—C5—N4178.9 (3)C1—N2—N3—C2176.1 (3)
C4—C5—C6—C71.1 (6)C6—C5—N4—O1179.3 (4)
N4—C5—C6—C7178.2 (4)C4—C5—N4—O11.3 (6)
C5—C6—C7—C80.8 (6)C6—C5—N4—O20.5 (6)
C4—C3—C8—C70.9 (6)C4—C5—N4—O2178.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···S1i0.862.563.369 (4)158
N2—H2B···S1ii0.862.563.394 (4)165
Symmetry codes: (i) x+2, y+1/2, z+5/2; (ii) x+2, y1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC8H8N4O2S
Mr224.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)13.276 (3), 8.225 (7), 10.491 (4)
β (°) 112.78 (5)
V3)1056.2 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.930, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
9317, 2071, 1343
Rint0.081
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.117, 1.01
No. of reflections2071
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···S1i0.862.563.369 (4)157.7
N2—H2B···S1ii0.862.563.394 (4)165.1
Symmetry codes: (i) x+2, y+1/2, z+5/2; (ii) x+2, y1/2, z+5/2.
 

Acknowledgements

The authors thank the Start-up Projects for Postdoctoral Research Funds of Southeast University (grant No. 1112000048) and Professor Dr Rengen Xiong.

References

First citationCasas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationDeschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366–7368.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, Z.-H., Duan, C.-Y., Hu, J. & You, X.-Z. (1999). Inorg. Chem. 38, 1719–1724.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSutton, L. E. (1965). Tables of Interatomic Distances and Configurations in Molecules and Ions, Special Publication No. 18. London: The Chemical Society.  Google Scholar
First citationTarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456–460.  Web of Science CrossRef CAS Google Scholar
First citationWu, D.-H., He, C., Duan, C.-Y. & You, X.-Z. (2000). Acta Cryst. C56, 1336–1337.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds